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ABSTRACT
In this paper, we report our recent research aimed at im-

proving the pronunciation-modeling component of a speech

recognition system designed for mobile voice search. Our

new discriminative learning technique overcomes the limi-

tation of the traditional ways of introducing alternative pro-

nunciations that often enlarge confusability across different

lexical items. Instead, we make use of a phonetic recognizer

to generate pronunciation candidates, which are then evalu-

ated and selected using the global minimum-classification-

error measure, guaranteeing a reduction of the training-set

error rate after introducing alternative pronunciations. A

maximum entropy approach is subsequently used to learn

the weight parameters of the selected pronunciation candi-

dates. Our experimental results demonstrate the effectiveness

of the discriminative pronunciation learning technique in a

real-world speech recognition task where pronunciation of

business names presents special difficulty for high-accuracy

speech recognition.

Index Terms— Pronunciation modeling, discriminative

learning, MCE objective function, phonetic decoding, greedy

search

1. INTRODUCTION

In current speech recognition technology, virtually all compo-

nents of recognition systems are automatically learned. One

notable exception is the “pronunciation” component, which

determine how each lexical item (e.g., word) is composed of

a sequence of constituent units such as phones. Standard pro-

nunciations are derived from existing dictionaries, and do not

cover all diversity of possible lexical items that represent var-

ious ways of pronunciating the same word. Such diversity

is prevalent, and is caused by many factors including differ-

ent speakers, accents, speaking conditions/styles, and differ-

ent word contexts.

A number of earlier studies explored the use of alternative

pronunciations or pronunciation networks [2, 3, 4, 5, 7]. On

the one hand, alternative pronunciations, obtained typically
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by manual addition or by maximum likelihood learning, in-

crease the coverage of pronunciation variability. On the other

hand, they may also lead to greater confusability between dif-

ferent lexical items. These two opposing factors usually result

in either no recognition performance improvement or minor

one compared with the use of standard dictionaries (e.g., [2]).

To overcome the difficulty of increased lexical confusabil-

ity while introducing alternative pronunciations, one can use

discriminative learning to intentionally minimize the confus-

ability. This forms the core idea of discriminative pronuncia-

tion modeling presented in this paper. Some earlier work used

the discriminative criterion of minimum classification error

(MCE) to adjust the weighting parameters in the alternative

pronunciations (e.g., [6]). In our work, we directly exploit

the MCE for selecting the more “discriminative” pronunci-

ation alternatives, where these alternatives are derived from

high-quality N-best lists or lattices in the phonetic recogni-

tion results.

The rest of this paper is organized as follows. In Sec-

tion 3, we introduce our discriminative pronunciation learning

framework, and in particular, the MCE objective function and

its approximation for selecting the alternative pronunciations.

In Section 3, we describe our experiments and present the

results demonstrating the effectiveness of our pronunciation

learning method. Finally, we draw conclusions and outline

the future work that will extend the current work presented in

this paper.

2. DISCRIMINATIVE PRONUNCIATION LEARNING

In speech recognition exploiting alternative pronunciations,

the decision rule can be approximated by

Ŵ = arg max
W

P (X|W )P (W )

= arg max
W

∑
q

P (Sq, X|W )P (W )

∼= arg max
W

∑
q

P (Sq|W )P (X|Sq)P (W )

∼= arg max
W

max
q

P (Sq|W )P (X|Sq)P (W ) (1)
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where X is the sequence of acoustic observations (gener-

ally feature vectors extracted from the speech waveform),

W is a sequence of hypothesized words or a sentence, and

q = 1, 2, . . . , N is the index to multiple phone sequences

Sq that are alternative pronunciations to sentence W . Each

Sq is associated with the q-th path in the lattice of word-

pronunciations, and has an implicit dependency on W (which

we drop for ease of reading).

In this work, we develop a discriminative technique that

selects pronunciation(s) from the phonetic recognition results

for each word such that the sentence error rate in the training

data is minimized. In particular, we use the MCE objective

function to approximate the empirical error rate (in the train-

ing set):

l(d(Λ)) =
∑

r

lr(dr(Λ)) (2)

with

lr(dr(Λ)) =
1

1 + e−dr(Λ)

and

dr(Λ) = −Di(Xr, Λ) + log

⎧⎨
⎩

1
M

∑
j �=i

exp [Dj(Xr, Λ)]

⎫⎬
⎭

Dj(Xr, Λ) = max
q

P (Sq|Wj)P (Xr|Sq)P (Wj)

where Xr is the observation from the r-th sentence or utter-

ance, Wi refers to the correct sequence of words for the r-th

sentence, Wj refers to all the incorrect hypotheses (obtained

from N-best lists produced by the word decoder), M is the

total number of hypotheses considered for a particular sen-

tence, and Λ is the family of parameters to be estimated to

optimize the objective function. These parameters include the

probability weights of P (Sq|Wj) for each pronunciation and

the parameters of HMMs. In the experiments reported in this

paper, the HMM parameters are fixed independent of the cur-

rent pronunciation learning, and P (Sq|Wj) optimized by the

MAXENT method [1].

We now define the “MCE score”:

Δ(p,w) = l(d(Λ)) − l(p,w)(d(Λ)) (3)

where (p, w) is a pronunciation-word pair, l(p,w)(d(Λ)) is the

MCE objective function associated with the added new pro-

nunciation p for word w, and l(d(Λ)) is the same MCE objec-

tive function but associated with the canonical pronunciation.

Note that Δ(p,w) in (3) is an approximation of the number of

corrected errors after using the new pronunciation p. Thus, if

the value is positive, then there is an improvement of the rec-

ognizer performance measured by training-set error reduction

with the new pronunciation p for word w.

This, therefore, turns discriminative pronunciation learn-

ing to the problem of searching for all possible ways of adding

pronunciations to incorrectly recognized words so that Δ(p,w)

in (3) is positive (with a margin). That is, our method searches

for the subset S, in a greedy manner, such that

S =
{

(p, w) ∈ T | Δ(p,w) > ε
}

(4)

where set T denotes all possible (p, w) pairs.

One of the limitations of finding the pairs in a greedy way

is the assumption that errors corrected by a particular pair are

uncorrelated with errors corrected by any other pair. There-

fore, in order to gain the greatest performance improvement,

it is essential to schedule the search steps in pronunciation

candidate selection over the words and sentences in the train-

ing data. In the experiments reported in Section 3 of this pa-

per, we explored only some heuristic scheduling strategies.

Another practical issue encountered in implementing the

technique described above is the computational cost since the

MCE objective function depends on the entire set of training

data X and the number of paths in the phone lattices pro-

duced from the phonetic decoder is very large. This makes the

ranking of the possible alternative phone sequences based on

the MCE objective function very expensive in computation.

In our implementation, we pre-stored and cached all quan-

tities related to training data X in a huge memory and then

accessed them efficiently during the execution of the discrim-

inative pronunciation learning/selection algorithm.

3. EXPERIMENTAL EVALUATION

In the experimental evaluation of the discriminative pronun-

ciation learning technique described in the preceding section,

we used the Windows-Live-Search-for-Mobile (WLS4M)

database, which consists of very large quantities of short ut-

terances from spoken queries to the WLS4M engine. The

usual behavior of a user who called in the system is to ask

for a particular business and/or street and city. Often times,

the business names are not in any standard lexicon and our

current system uses Letter-To-Sound rules to produce the

“canonical pronunciations” in the lexicon for these words or

phrases.

The data selected for training pronunciations correspond

to all the queries collected during one month of system usage,

which contains approximately 100,000 utterances about busi-

ness names for which we had a “click” by the users. When

using system, the user is prompted to click one of the options

from the N-best list that the speech recognizer produces. If

the user clicks an option, the corresponding query is recorded.

We use these clicks as a noisy “ground truth”. We found that

in most cases (90% counted from a subset of the data) there

was a clear correspondence between the click and the realistic

ground truth. Therefore, our training data are not quite “pure”

in terms of the transcription quality (which may account for

some experimental results shown later in this section). How-

ever, the test data used in our experiments consist of 11,000
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Word New pron. Canonical pron. MCE score

Whataburger /w/ao/t/ax/r/b/er/r/g/ax/r/ /w/ah/t/ax/b/er/g/er/ 29.9

Donalds /d/aa/n/ax/l/z/ /d/aa/n/ax/l/d/z/ 28.6

Stations /t/ey/sh/ax/n/ /s/t/ey/sh/ax/n/z/ -31.3

Hall /ao/l/ /hh/ao/l/ -18.0

Table 1. Examples of (p, w) pairs and their MCE scores. Note the different qualities of the pronunciations as related to the

positive or negative MCE scores.

utterances that were all manually transcribed.

3.1. Baseline System

The baseline system used in our experiments is a standard

HMM-GMM speech recognizer provided as part of the Mi-

crosoft Speech API (SAPI). The acoustic model is trained

on about 3000 hours of speech, using PLP features and an

HLDA transformation. The bigram language model is used

and trained with realistic system deployment data. The rec-

ognizer has a dictionary with 64,000 distinctive entries. The

only component that is modified from the above baseline sys-

tem in our experiments reported below is the entries in the

dictionary as well as the weights associated with the entries.

3.2. Training — Candidate pronunciation selection

To select the set T in (4) for the (p, w) candidates, we first per-

formed a phone-to-word alignment on the training data. The

alignment was obtained using an independent phone recog-

nizer based on 500 single-phone plus pre-defined multi-phone

units (which were the most common sequences of phones in

the dictionary). Using the temporal information of the 10-

best phone lists and the word recognition results, all the ob-

served pairs (p, w) were initially selected. Among these pairs,

we selected only ones (as possible new pronunciation candi-

dates) with more than 30 occurrences and with at most three

phone sequence candidates for each word in order to prune

out noisy sequences of the recognized phones. The pruning

step is necessary because the phone recognition accuracy is

approximately 60%. Some examples of (p, w) pairs observed

in the training data can be found in Table 1, where we also

listed the related MCE scores defined in (3). We note that the

positive scores, which correspond to reduction of the training-

set error rate after introducing the new pronunciation, are as-

sociated with the new phone sequences (produced by the pho-

netic recognizer) with high quality, while the negative scores

tend to be associated with poor quality (e.g., missing /s/ or

/h/).

It is worth noting that the sparsity of the data is a limi-

tating factor in our current approach: only 10,000 words out

of the 64,000 appeared in the training data. Further, among

these 10,000 words, only 500 of them appeared frequently

enough to give robust selection and parameter estimation for

the pronunciation candidates against the “noise” added by the

imperfection of the phonetic decoder. Thus, the cardinality

of the set of candidates T was only 1,100 in our experiments.

Applying the MCE objective function of (3) as described in

the previous section, we obtained 400 valid candidates in the

set of S. The examples in Table 1 are among the extreme pairs

(i.e., with the best and worst MCE scores) from the set of S.

3.3. Training — Weight optimization

After the pronunciation candidates are selected via the evaluation
and ranking of the MCE objective function, we then need to deter-
mine the weight parameters Λ = P (Sq|Wj) before applying the
decision rule of (1) for speech recognition. Among various pos-
sible approaches, we in this work adopted the maximum entropy
(MAXENT) one, as this approach does not require full re-decoding
of the entire training data (which is computationally expensive). Our
MAXENT approach determines the weight for each of the valid pro-
nunciations by re-scoring the N-best list produced by the original
decoder. Specifically, for each utterance, we extract the following
set of features:

• ACo + LMo

• max(0, AC(p,w) −ACo) ∀(p, w) ∈ S

where ACo and LMo are the original acoustic and language model
scores, respectively, and AC(p,w) is the acoustic score, obtained
using forced alignment after adding a particular pronunciation pair
(p, w). Note that the second set of features will be zero almost al-
ways except when word w appears in a particular candidate from the
N-best list and the new pronunciation aligns better than the baseline
pronunciation. The MAXENT weights are expected to be positive.
This is because when a useful pronunciation is found to align better
than the baseline pronunciation, it gives a clue that the hypothesis
should be ranked higher in the N-best list. In our analysis, it was
found that a pronunciation that corrected more errors often had a
higher weight than one that did not correct as many errors.

The actual training of the weights using MAXENT consists of
two steps:

• Extract features from each item in the N-best list for each sen-
tence — one feature from the original scores, and 400 features
from each valid pair of (p, w);

• Learn the weights using the MAXENT formulation

3.4. Performance results

In our experiments with the manually transcribed test set, we used
the set of pronunciations learned from the training data as described
in the earlier portion of this paper. For practical reasons, we used
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Test Sets New pron. Sent. acc.(Baseline system) Sent. acc. (New system)

Full 73.86% 74.52%
Whataburger /w/ao/t/ax/r/b/er/r/g/ax/r/ 58.8% 97.05%

Js /jh/ey/s/ 32.11% 44.03%
Donalds /d/aa/n/ax/l/z/ 38.65% 71.42%

subset w/ full coverage 64.79% 67.35%

Table 2. Speech recognition accuracies of the baseline system vs. the new system after pronunciation learning. Results are presented for the
full test set, as well as for commonly mis-recognized words and for a subset of the test set for which there is full coverage of words in the
training set.

a re-scoring method rather than a computationally expensive, full
re-decoding one. The comparative performance results between the
baseline recognizer and the new one with MCE-based pronunciation
learning are summarized in Table 2. The sentence accuracy (Sent.
acc.) is used as the performance measure for both systems. For the
full test set (where we suffered from data sparsity problem), pronun-
ciation learning helped reduce the error rate by absolute 0.7%. When
the sparsity problem is artificially removed by counting the errors for
only the words that are fully covered in the training set, then more
than three times of performance improvement (2.6% absolute error
rate reduction) are observed.

In Table 2, we also listed several common words in the test set
whose recognition accuracy is drastically enhanced after adding the
new pronunciation learned by the discriminative technique described
earlier in this paper.

In our analysis of the experimental results, we found that when
the recognizer made errors, about one quarter of times the acoustic
score was right (in terms of N-best ranking) and the language model
score was wrong, and about the same one quarter of times when both
scores were wrong. However, about half of the times, the acoustic
score was wrong while the language model score was right. There-
fore, continuing the work on getting a better acoustic score (e.g. de-
veloping a better pronunciation model) is key to achieving higher
accuracy for the full recognizer in our future work.

4. DISCUSSIONS AND FUTURE WORK

Pronunciation modeling in speech recognition has a long history
and is known to be a very difficult problem (e.g., [2, 3, 7]). The
earlier, maximum-likelihood-based approach to generating multiple
pronunciation creates greater flexibility in ways that people pro-
nounce words, but the addition of new entries often vastly enlarges
confusability across different lexical items. This is because the max-
imum likelihood learning does not take into account such lexical
confusability. Our new approach presented in this paper directly
makes use of the popular MCE concept, not for learning HMM
parameters in the past but for selecting pronunciation candidates
produced by a phonetic recognizer. The MCE objective function
which we used measures the recognizer error rate and hence the
lexical confusability, for evaluating and selecting the pronunciation
candidates. If a candidate causes undesirable confusability increase,
then it would not be added. (This kind of decision could not be made
in the traditional maximum-likelihood-based approach.) As a result,
the proposed algorithm may not produce realistic pronunciation for
a word, but the deviations would be consistent so as to reduce the
overall recognition errors in the training set as the MCE objective
function dictates.

Due to the several experimental limitations, we reported only
moderate performance improvement for the overall test set. We

also showed promising results when the limitations such as the data-
sparsity problem were eliminated. Our future work will involve sig-
nificant increases of the training set to reduce or remove the data-
sparsity problem. We will also work on enriching the sources of
pronunciation candidates by not only using the phonetic decoding
results but also generating noisy versions of the canonical pronunci-
ations. Finally, due to the large computational cost, we only carried
out the experiments using the N-best re-scoring paradigm. We ex-
pect greater performance improvement using re-decoding instead of
re-scoring after the computational bottle-neck is overcome.
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