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ABSTRACT

In this paper, we reveal new findings about the generated musical
noise in minimum mean-square error short-time spectral amplitude
(MMSE STSA) processing. Recently we have proposed a objective
metric of musical noise based on kurtosis change ratio on spectral
subtraction (SS). Also we found an interesting relationship among
the degree of generated musical noise, the shapes of signal’s proba-
bility density function, the strength parameter of SS processing. This
paper is aimed to automatically evaluate the sound quality of various
types of noise reduction methods using kurtosis change ratio. We
give a mathematical analysis based on higher-order statistics view-
point, and lead to a valuable relation in that MMSE STSA has a
weakness in speech period distortion rather than noise period, and
vice versa in SS.

Index Terms— Musical noise, higher-order statistics, minimum
mean-square error short-time spectral amplitude, spectral subtrac-
tion, speech enhancement

1. INTRODUCTION

Nonlinear processing, e.g., spectral subtraction (SS) [1] and min-
imum mean-square error short-time spectral amplitude (MMSE
STSA) [2], often generates particular distortion, the so-called mu-
sical noise. It is one of the critical problems inherent in nonlinear
processing because musical noise is perceived as harsh and artificial
tone. Thus a lot of countermeasures to handle the musical noise
have been proposed. However musical noise can not be evaluated by
traditional metric about sound quality, e.g., cepstrum distance, and
we just had to subjectively assess the sound quality [3]. To begin
with, we did not know so much thing and theory about subjective
evaluation of musical noise. Thus we can not evaluate the actual
performance of each of countermeasures against musical noise.

We have proposed a novel mathematical metric of musical
noise [4]. The metric based on change of kurtosis, 4th-order statis-
tics, through nonlinear processing, has high correlation with the
amount of perceived musical noise by human. Also we found that
the degree of generated musical noise in processing is strongly re-
lated with kurtosis ratio. Therefore now we can objectively evaluate
the degree of generated musical noise in nonlinear processing with
our kurtosis ratio.

Recently it is widely accepted for speech-enhancement studies
that MMSE STSA sets up less musical noise than SS, and we can
obtain the high-quality (less degraded) output signal. However no
one confirmed it from theoretical and analytical aspects because it
is so difficult and unrealistic that both of MMSE STSA and SS are
compared via subjective evaluation in every parameters of itself. In
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this paper, we realize the comparison using kurtosis ratio, and con-
sequently we reveal a new findings about the degree of generated
musical noise in MMSE STSA vs. SS.

2. OVERVIEW OF NONLINEAR PROCESSING

2.1. SS
At first, we introduce two kinds of representative nonlinear process-
ing, i.e., SS and MMSE STSA. Although various types of SS meth-
ods are proposed, we address single-channel SS in the power do-
main, which is used for any speech enhancement [5].

Let the corrupted speech signal o(t) be represented as

o(t) = s(t) + d(t), (1)

where s(t) is a clean speech signal and d(t) is a noise signal. This
processing is conducted on a frame-by-frame basis. The short-time
Fourier transform (STFT) is used and the previous model can be
rewritten as

O(k,m) = S (k,m) + D(k,m), (2)

where k denotes the frequency subband and m is the frame index. In
SS, noise reduction is achieved by subtracting the power spectrum
of the estimated noise from the power spectrum of the noisy obser-
vation. This procedure is given by

Y(k,m) =

√
|O(k,m)|2 − β · Em

[|D(k,m)|2] · e j arg(O(k,m)), (3)

where Y(k,m) is an estimated speech signal, β is an over-subtraction
coefficient (i.e., strength parameter) and E[·] is an expectation oper-
ator of · with respect to m.

2.2. MMSE STSA estimator
MMSE STSA is a method for estimating the clean speech spectral
amplitude from corrupted speech signal by minimization of mean-
square error. It is supposed that the statistical model of noise is
Gaussian model, and the model is statistically independent and has
zero mean. The given spectral gain by MMSE is written by

G(k) = Γ(1.5)

√
(vk)

γk
exp
(
− vk

2

)
·
[
(1 + vk)I0

( vk

2

)
+ vkI1

( vk

2

)]
, (4)

where Γ(·) denotes the gamma function. I0and I1denotes the modi-
fied Bessel functions of zero and first order, respectively.

Also functions in the equation are defined by

vk �
ξk

1 + ξk
γk. (5)

Here ξk and γk are defined by

ξk �
λs(k)

λd(k)
, (6)

γk �
R2

k

λd(k)
, (7)

where λs(k) � E[|S k |2] and λd(k) � E[|Dk |2]. ξk and γk are called a

4433978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



F
re

q
u
en

cy
 [

H
z]

Time [sec.] Time [sec.]

F
re

q
u
en

cy
 [

H
z]

(a) (b)

Fig. 1. (a) Observed signal spectrogram. (b) Processed signal spec-
trogram.

priori and a posteriori signal-to-noise ratios (SNR), respectively.

MMSE STSA can estimate the clean speech spectral amplitude
as above, ideally. However, in actual case, we can not know a priori
and a posterior SNR, and thus we estimate them by the following
equation,

ξ̂k(m) = η
Â2

k(m − 1)

λd(k,m − 1)
+ (1 − η)P[γk(m) − 1], 0 < η < 1, (8)

where Âk(m − 1) is the amplitude estimator of the kth signal spectral
component in the (m − 1)th analysis frame, and P[·] is an operator
which is defined by

P[x] =

⎧⎪⎪⎨⎪⎪⎩
x if x > 0,

0 otherwise.
(9)

Consequently MMSE STSA is managed by estimating the mth frame
spectral gain using previous frame spectral gain.

3. MUSICAL NOISE METRIC VIA KURTOSIS RATIO

In this section, we introduce a basic idea of musical noise evaluation
and musical noise metric for SS [4]. Hereinafter we give an ex-
planation of the adequacy applying the metric to general nonlinear
processing.

3.1. Relationship between kurtosis ratio and musical noise
Nonlinear processing, including SS and MMSE STSA, often gener-
ates characteristic isolated power spectral components (see Fig. 1 (a)
and (b)). We define the musical noise as the generated audible iso-
lated spectral components through nonlinear processing. Thus we
speculate that the amount of musical noise is highly related to the
number of isolated components and the isolated level of them. Con-
sequently we realize the evaluation of the isolated components by
kurtosis.

We could say that kurtosis can evaluate the percentage of tonal
components in total components. Bigger value indicates a signal
with heavy skirt in its probability density function (p.d.f.); it means
that a signal has a lot of tonal components. Kurtosis is defined as

kurt =
μ4

μ2
2

, (10)

where kurt denotes kurtosis and μn is the nth order moment which is
given by

μn =

∫ ∞

0

xnP(x)dx. (11)

Here, P(x) is p.d.f. of the signal. We consider the SS in power
spectral domain, so the integral range is only positive.

Although we can measure the number of the tonal components
by kurtosis, note that kurtosis itself is not enough to measure the
musical noise. This is obvious in that kurtosis of some unprocessed
signals, e.g., speech signals, is also high, but we do not recognize
speech as musical noise. In order to set aside the genuine tonal com-
ponents, we focus on the fact that musical noise is generated only in
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Fig. 2. Shapes of p.d.f. (a) Original signal. (b) Processed signal.

artificial signal processing. Hence, we turn our attention to kurtosis
change ratio (kurtosis ratio) between before/after signal processing.

3.2. Kurtosis ratio in SS
We derive the relationship between kurtosis and the strength of SS.
Moreover, the relationship between kurtosis of processed signal and
kurtosis of unprocessed signal are revealed.

3.2.1. Gamma distribution modeling

We utilize the gamma distribution as a model of speech or noise sig-
nal [6]. The gamma distribution have a lot of useful mathematically
attributes which are derived from the gamma function.

The p.d.f. of the gamma distribution is written as

P(x) =
1

Γ(α) θ α
· x α−1 e−

x
θ , (12)

where x ≥ 0, α > 0 and θ > 0. Also α denotes the shape parameter
and θ is the scale parameter. The Gamma function is defined by

Γ (α) =

∫ ∞

0

xα−1e−x · dx. (13)

Hereafter, in this paper, let C = 1/[Γ(α) θ α]. If α = 1, this is the
exponential distribution. It is well known that the average of the
gamma distribution is given by

E [P(x)] = αθ, (14)

where E[·] is an expectation operator. The gamma distribution mod-
eling is the estimation of the shape and the scale parameters from
the raw input signal. In this paper, we use the maximum likelihood
estimation method for estimating two parameters α and θ, as follows,

α̂ =
3 − γ + √(γ − 3)2 + 24γ

12γ
, (15)

θ̂ =
E [ x ]

α̂
, (16)

where γ = log( E [x] ) − E [ log x ] (see Refs. [7]).

3.2.2. Kurtosis of modeling signal

In this way of modeling by the gamma distribution, kurtosis is deter-
mined by the shape and the scale parameters as below. At first, we
represent the nth-order moment as

μn =

∫ ∞

0

xnP(x) dx = C · θα+n · Γ(α + n). (17)

Using (17) and useful relation,Γ(α)= (α−1) · · · (α− j)Γ(α− j), we can
obtain kurtosis of the modeled raw signal by the gamma distribution
as follows [4].

kurtorg =
μ4

μ 2
2

=
(α + 2)(α + 3)

α(α + 1)
. (18)

3.2.3. Change of modeling signal’s kurtosis in processing

SS is regarded as p.d.f. deforming processing, i.e., lateral shift of
p.d.f. (See Fig. 2). Thus processed signal’s kurtosis depends on the
strength of processing. We formulated the deformed signal’s kurtosis
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Table 1. Expected situation of musical noise generation

SS MMSE STSA estimator

In speech period Moderate (Unclear)

In noise period Awful Moderate

Table 2. Subjective evaluation conditions

Database noise: white Gaussian noise:
speech: Japan News Article Sentences

Mixing equivalent SNR mixing

SS strength parameter: configure from 0 to 2.5 with
0.05 increments in between
flooring: negative power components are re-
placed by zero

MMSE STSA strength parameter: configure from 0.5 to 0.99
with 0.01 increments in between

Evaluation norm SNR and kurtosis ratio of clean speech and
clean noise signal

and change of kurtosis in SS [4]. The resultant p.d.f. of the processed
signal is written as

P(x) =

⎧⎪⎪⎨⎪⎪⎩
C · (x + β · αθ)α−1 e−

x+β·αθ
θ (x > 0) ,

C
∫ β·αθ

0
xα−1e−

x
θ dx (x = 0) .

(19)

Here we approximate (x+βαθ)α−1 in (19) by Taylor expansion, and
we have

μ4 ≈ Ce−αβ
[∫ ∞

0

x(α+4)−1e−
x
θ dx+βαθ(α−1)

∫ ∞

0

x(α+3)−1e−
x
θ dx

+
(βαθ)2

2
(α−2)(α−1)

∫ ∞

0

x(α+2)−1e−
x
θ dx
]
. (20)

Also the 2nd-order moment is estimated as below,

μ2 =

∫ ∞

0

x2
[
C(x + β · αθ)α−1e−

x+βαθ
θ

]
dx ≤ Ce−αβθ α+2Γ(α + 2). (21)

Thus processed signal’s kurtosis is estimated as

kurtss≥ eαβ

α(α+1)

{
(α+2)(α+3)+βα(α+2)(α−1)+

(βα)2

2
(α−3)(α−1)

}
.

(22)

Here, α denotes the shape parameter of modeled gamma distribution,
and β is the parameter of SS processing strength. Thus kurtosis ratio
in SS can be given as

kurtosis ratio =
kurtss

kurtorg

=eα·β
{

1 +
βα(α − 1)

(α + 3)
+

(βα)2(α − 2)(α − 1)

2 (α + 2)(α + 3)

}
. (23)

Also we found that the musical noise metric based on kurtosis ra-
tio is highly related with the amount of perceived musical noise by
human [4].

Kurtosis ratio is strongly related with the generated isolated
components in nonlinear processing. Thus we can evaluate the de-
gree of generated musical noise according to magnitude of kurtosis-
ratio value.

4. THEORETICAL ANALYSIS

As indicated in (23), we can now find a relationship between the
amount of generated musical noise in SS and the original signal’s
kurtosis. That is, SS for high kurtosis signal (α is small) results in
less musical noise than SS for low kurtosis signal (α is large) even
if we set the fixed subtraction parameter β. Thus in this paper, we
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apply the above-mentioned theory to speech-noise mixed signal, and
obtain the following theoretical prediction about the generated mu-
sical noise when SS is applied to speech/noise-dominant intervals.

Speech signal has higher kurtosis than noise signal, in general.
Therefore generated musical noise in speech-dominant intervals is
relatively less. Conversely, a lot of musical noises generate in noise-
only intervals because noise signal is low kurtosis signal, e.g., Gaus-
sian noise.

On the other hand, we can not formulate generated musical noise
amount in MMSE STSA estimator, but we can still speculate the de-
gree of generated musical noise in only instance of noise intervals.
Here, we suppose that noise signal is stationary and has low kurto-
sis. In this instance, the obtained spectral gain by MMSE STSA es-
timator is stationary and small value in noise intervals. Thus output
signal’s p.d.f. does not change so much from original one. Conse-
quently, the amount of generated musical noise is less than the case
of using SS. However, in speech intervals, we can not forecast be-
cause the estimation of spectral gain using a prior and a posterior
SNR depends on previous frame and is extremely complicated.

Table 1 lists the summary of the points about musical noise gen-
eration. We will confirm the predictions and bring out the unclear
points with experiment in the next section.
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5. EXPERIMENT
5.1. Conditions
We conduct an experiment and objective evaluation for musical noise
on SS and MMSE STSA. One of our great interest is comparative
merits and demerits of SS and MMSE STSA. Particularly, we are
interested in the difference on the degree of generated musical noise
between both method, and between both signal of speech or noise.

Conditions of experiment are listed in Table 2. The strength
parameter of MMSE STSA is set to commonly-used value and the
strength parameter of SS is controlled as to equal SNR performance
of noise reduction.

5.2. Results
Figure 3 depicts processed signal’s SNR on SS and MMSE STSA.
As we can see from Fig. 3, both the upper limit performance of
MMSE STSA and SS are about 11 dB. Figures 4 and 5 show the re-
lationship between kurtosis ratio and the strength parameter of each
method. In SS, as we expected, kurtosis ratio is smaller value in
speech intervals than noise intervals. This is because kurtosis ratio
in SS depends on unprocessed signal’s original kurtosis.

On the other hand, in MMSE STSA, noise’s kurtosis ratio is
very small, but speech’s kurtosis is very high and changes rapidly.
It is particular note around commonly-used parameter. This phe-
nomenon has already confirmed as the sensitive relationship between
the strength parameter of MMSE STSA estimator and musical noise
via the subjective evaluation [2]. Consequently, in SS, musical noise
mainly arises in noise interval, on another front, in MMSE STSA, the
problem of musical noise generation is mainly boiled up in speech
interval.

We compare MMSE STSA with SS in terms of the degree of
generated musical noise. Figures 6 and 7 present the kurtosis ratio
on SS and MMSE STSA in condition of equivalent SNR. These re-
sults are very interesting. Figure 6 shows the familiar phenomenon
of SS that the amount of generated musical noise in SS is very much
and gradually increasing as bigger the strength parameter, on the
other hand, it is less in MMSE STSA. Figure 7 presents the interest-
ing result that MMSE STSA generates more musical noise in speech
signal than SS. This is a new finding. We have believed the com-
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monly accepted theory that MMSE STSA is superior to SS in terms
of musical noise. It is still true in noise-only part, but, in speech-
dominant part, this is misconception. This new finding is confirmed
by spectrogram (Fig. 8). Spectrogram of SS processed signal shows
the degradation of speech signal but we can not detect the isolated
component. On the other hand, spectrogram of MMSE show the
apparent isolated components. This is consistent with our subjec-
tive impressions. Consequently MMSE STSA generates the isolated
components in speech signal and we have conscious access to musi-
cal noise.

6. CONCLUSION
We analyze the degree of generated musical noise in SS and MMSE
STSA. Also we came up with the novel fact about how to character-
istic generate musical noise in MMSE STSA.
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