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ABSTRACT 
This paper presents a low-complexity algorithm for tracking the 
noise spectral variance of speech contaminated by non-stationary 
noise sources. The proposed algorithm is based upon a recursive 
refinement process in which each step of the algorithm expectation 
of the instantaneous noise power is calculated based on 
information from the incoming signal and the current estimated 
distribution parameters, and estimation of the distribution 
parameter is refined accordingly to incorporate the expectation 
results.  A bias estimation correction method is also introduced in 
the algorithm to avoid estimation errors that may occur when there 
is a significant mismatch between the statistics of the input signal 
and the current estimated distribution parameters. The proposed 
algorithm is compared to the Minimum Statistics method and it is 
found that the proposed algorithm achieves similar or better 
performances for various noise conditions and SNR settings.  

Index Terms— noise estimation, noise tracking, noise 
suppression, speech enhancement, expectation-maximization 

1. INTRODUCTION 
We are living in a noisy world where the noise generated from 
either natural sources or human activities can be found almost 
everywhere: car, train, street, restaurant, etc.  During voice 
communication those noises are captured by the microphone and 
adversely affect the quality of voice communication. To address 
this problem, noise suppression technology is developed to remove 
those noise components, and produce an enhanced speech signal 
that sounds more pleasant to human ears. 

In principle, most noise suppression systems rely on some sort 
of spectral domain process that attenuates the time/frequency (T/F) 
regions of the input noisy speech that have low Signal-to-Noise-
Ratios (SNR), and preserves those with high SNR. The essential 
parts of the speech signal are thus preserved while the noise level 
is greatly reduced, leading to an enhanced speech signal.  Since 
many noises are non-stationary in nature, a noise estimator is used 
in noise suppression systems to trace time-varying statistics of the 
noise signals. One popular choice of the noise estimator is the 
VAD (Voice Activity Detection) based approach, where the noise 
estimation is updated only when speech is not present in the input.
The performance of the VAD approach strongly depends on the 
accuracy of the voice detection, which is a difficult task in 
particular for signals with low SNR. In addition, this method 
precludes the possibility to update the noise estimation when the 
speech signal is present, which is inefficient since there may still 
be spectral bands where the speech level is weak and noise 
estimation can still be reliably updated. Another widely quoted 
method is the Minimum Statistics (MS) noise estimator [1].  In 
principle, the MS method keeps a record of historical samples for 

each spectral location, and the noise level is estimated based on the 
minimum signal level from the record.  It is reported that the MS 
method achieves good noise tracing performance for non-
stationary noises; however, it has a high memory demand and is 
not applicable to devices with limited memory resources.  

In this paper we present a noise estimation algorithm that is 
built upon an expectation-maximization (EM) [2] principle. In the 
proposed algorithm, the instantaneous noise power is estimated 
each frame based on information from the incoming signal and the 
current estimated distribution parameters and the distribution 
parameters, which include the noise variance we are interested in, 
are refined from the expectation results. Instead of using a trained 
gain function for noise power estimation as proposed in [3], naïve 
minimum mean-square-error (MMSE) noise power expectation is 
used and the potential estimation bias problem is addressed by 
using a simple bias estimation correction method. The proposed 
algorithm has very low computational power and memory 
requirements and hence is suitable for embedded applications with 
limited computational resources.  

2. PRINCIPLE OF THE ALGORITHM 
2.1. Gaussian Model for Speech and Noise Signals 
We consider the following additive signal model for the noisy 
speech signal:  

( ) ( ) ( )m m mk k k= +Y X D , (1) 

where ( )mkY , ( )mkX , and ( )mkD  are complex-valued short-

time DFT coefficients of the noisy speech signal ( )y n , clean 

speech signal ( )x n  and noise signal ( )d n  respectively.  Here k is 
the frequency bin index and m is the frame index of the DFT 
analysis window. The complex-valued DFT coefficients can be 
further decomposed into amplitude and phase representations as 
follows: 

( ) ( ) ( )( )expm R m j mk k kϑ=Y ,  (2) 

( ) ( ) ( )( )expm A m j mk k kα=X , and (3) 

( ) ( ) ( )( )expm N m j mk k kφ=D ,  (4) 
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where ( )R mk , ( )A mk  and ( )N mk  are the amplitudes of the 

noisy speech, clean speech and noise signals, respectively, and 
( )mkϑ , ( )mkα  and ( )mkφ  are their phases.   

In most noise suppression systems the speech and the noise 
signals are usually modeled as independent, zero-mean, complex 
Gaussian variables with variances ( )x kλ , and  ( )d kλ  due to the 
simplicity of this model and its relative good results.  This 
assumption leads to the following marginal and conditional 
distributions: 
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d d

N N
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For conciseness, the frame index m and frequency index k are
omitted in the above distribution functions as well as in the 
subsequent discussion whenever it won’t cause any confusion. 

2.2 Estimation of Noise Power 
As a first step of the proposed noise estimation algorithm we try to 
estimate the instantaneous power of the noise signal from the noisy 
signal that we observed. To this end, we define:  
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Here ξ  and γ  are usually referred to as a prior SNR and a
posterior SNR respectively.  It can be shown that under the 
assumed statistical model the posterior distribution of the noise 
amplitude given the observed signal Y  is Rician [4] with 
parameters ( )2 2,sσ :

( ) 0
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where ( )iI  denotes the modified Bessel function of order i. The 
MMSE estimation of the power of the noise signal is simply the 
second moment of this distribution, which is given by:  
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In practical implementation, the a priori SNR ξ  in the calculation 

of ( )2N̂ m  of frame m can be obtained by using the decision-
directed estimation method proposed in [5]:  

( )
( ) ( )( )

2ˆ 1 2ˆ 1 max 1,0
A m

m
d

ξ α α γ
λ

−
= + − − . (13) 

Here 0 1α <  is a pre-selected constant, and ( )ˆ 1A m −  is the 
amplitude estimation of the clean speech of previous analysis 
frame, i.e., 

( ) ( ) ( )ˆ 1 1 | 1A m E A m m− = − −Y . (14) 

In addition, the noise variance estimation updated in the previous 
frame m-1, ( )ˆ m

dλ ,  will be used in the calculation of ( )2N̂ m . The 
details of the noise variance estimation will be described in Section 
2.3.

2.3 Estimation of the Noise Variance 
The variance of the noise signal can be traced by using a recursive 
averaging process on the instantaneous noise power ( )2N m ,
which is unfortunately not accessible since in most cases the noise 
signal is “corrupted” by the speech signal in the input signal.  
Therefore in the proposed algorithm its MMSE estimation ( )2N̂ m ,

which represents the best-effort estimation of ( )2N m  under the 
assumed statistical model and the knowledge that we learn from 
the input noisy signal, is used instead. This idea leads to the 
following noise variance estimation algorithm:    

( ) ( ) ( ) ( )1 2ˆ ˆ ˆ1m m
N md dλ β λ β+ = − + , (15) 

where 0 1β< <  is a constant, ( )ˆ m
dλ  is the noise variance 

estimation from the previous frame and ( )1ˆ m
dλ +  is the updated 

estimation after incorporating the noise power estimation ( )2N̂ m .

The initial value ( )0
d̂λ  can be simply set to any pre-determined 

value, or to the noise variance measured at the initialization stage 
of the noise variance estimator  

It can be seen that the algorithm in fact follows closely to the 
principle of a generalized EM (GEM) algorithm [2]. In the 
expectation stage (12) the mean value of the noise power, or the 
hidden variable, is calculated with respect to the a posterior
probability density function jointly decided by the observed signal 
Y  and the current estimated noise variance ( )ˆ m

dλ ; in the 
maximization stage (15) the noise variance estimation is updated as 
a smoothed version of the maximum likelihood (ML) estimations 
performing on results from the expectation stage.  Moreover, it can 
be shown that the observation likelihood of the noise variance 

4422



estimation is increased in each step of the algorithm as what we 
expect from a GEM algorithm: 

( ) ( ) ( ) ( )1| |m m
P m P md dλ λ+ ≥Y Y . (16) 

2.4 Bias Estimation Correction 
The noise power estimation in (12) is an unbiased estimator for dλ
only when we have perfect knowledge about the a prior SNR, i.e., 
when the estimated SNR *ξ̂ ξ=  where *ξ  is the true SNR of the 

input signal.  When *ξ̂ ξ≠  it becomes a bias estimator for dλ
where the estimation bias is given by:  

( ) ( ){ } ( ){ }
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which may affect the accuracy of the noise variance estimation.  As 
can be seen from Fig. 1-a) the estimation bias is very 
unsymmetrical with respect to the error in the SNR estimation ζ̂ .
Large negative bias (or over-estimation of noise power) occurs 
when the estimated ˆ 1ξ  and * ˆξ ξ .  This usually happens 

during speech onset where the estimated SNR from the decision-
directed method (13) lags behind the true SNR, resulting in 
leakage of speech signal of large amplitudes into the noise variance 
estimation.  To address this problem, we can simply skip samples 
with large amplitudes that don’t fit into the assumed signal model 
in the noise estimation algorithm.  Specifically, we preclude 
samples where the amplitudes satisfy  

( ) ( )2 ˆ1 dR n ψ ξ λ> + , (18) 

where  ψ  is a pre-defined constant.  This is equivalent to replace 
(12) with the following noise power estimator: 

( )
( ) ( ) ( ) ( )
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This estimator successfully avoids the over-estimation problem.  
Unfortunately, it will introduce an (under) estimation bias even 
when *

k̂ kξ ξ= :

1 0ˆ 11 k

e
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ψ

ψ

ψ
ξ

−

−= >
−+

, (20) 

which, however, can be easily compensated or simply neglected 
when  ψ    is sufficiently large. 

As evident in Fig.2-b), the estimation bias of the updated noise 
estimator is now well-bounded even for very inaccurate SNR 
estimations.  

3. EXPERIMENT RESULTS 
We evaluated the performance of the proposed noise variance 
estimator by measuring its estimation error for speech signal 
contaminated by various noise sources.  The speech files used in 
the experiments contain concatenated sentences of eight short 
sentences from both male and female speakers.  An approximate 
0.5 second period of silence is inserted between each sentence pair 
in the speech files.  The sentences are simple meaningful sentences 
in English extracted from the TIMIT database [6]. The speech 
levels as measured with the P.56 algorithm [7] are adjusted to -26 
dBov.  Four different noise files were used in the tests and the 
noise levels were adjusted using the Root Mean Square (RMS) 
measure to the level dictated by the SNR settings of the test 
conditions.  The noise files were digitally mixed with the speech 
files to produce the testing files used in the tests.  The sampling 
rate of the testing files is 8 kHz.  

The proposed noise estimator was performed on spectral 
coefficients derived from a short-time DFT with 50% overlapping 
windows of 8 ms.  The parameters used in the experiments are 

Table 1 Mean and variance (in parenthesis) of the estimation error 
of the proposed algorithm and MS. 

6 dB 15 dB NOISE 
TYPE Proposed MS Proposed MS 
Street 1.14(1.46) 1.52(1.64) 1.47(1.69) 1.71(1.91)

Car 1.07(0.96) 1.36(1.22) 1.25(1.08) 1.64(1.68)

Babble 1.69(1.53) 3.33(2.52) 1.91(1.65) 3.24(2.49)

Train 0.94(1.09) 1.37(1.41) 1.21(1.25) 1.55(1.77)
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Fig. 1 Estimation bias of the MMSE noise estimator. 
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listed as follows: 0.02α = , 0.04β = ; 4.5ψ = .  For comparison, 
the MS noise estimator was included in our experiments, for which 
the original settings from [1] were used.  In our experiments the 
estimation error is defined as the absolute value of the difference 
between the estimated noise variance and the true variance in the 
logarithmic domain as follows: 

( )
( )10

ˆ ,
10log

,
d

d

k m
LogErr

k m

λ
λ

=  (dB), (21) 

where ( )ˆ ,d k mλ  is the estimated noise variance for frequency bin k

and frame index m.  The true noise variance ( ),d k mλ  is calculated 
separately from the “clean” noise files as 

( ) ( ) ( ) ( )2, , 1 1d d kk m k m N mλ κλ κ= − + − , (22) 

where 0.02κ = .
Table 1 gives the mean and variance of LogErr  that are 

measured over all the frames and frequency bins of the test files for 
each experiment condition.  It can be seen that the proposed 
algorithm achieves a smaller mean estimation error for all the noise 
conditions.  In addition, its performance is more consistent as 
suggested by the smaller variances of LogErr , which is also 
important to the noise suppression quality since a consistent 
estimation error can be easily compensated by tuning other parts of 
the noise suppression system.  

Instantaneous behavior of the proposed algorithm and MS 
algorithm are illustrated in Fig. 2 with two examples.  It can be 
seen that in both cases the two algorithms are able to track the 
changing noise variance over time; however, none of them did a 
perfect job.  The proposed algorithm tends to produce smoother 
estimation of the noise variance compared to the MS algorithm 
while the latter does a better job when the noise level is fluctuated 
significantly.   

4. CONCLUSION 
This paper proposes a low-complexity noise estimation algorithm 
that relies on recursive smoothing of MMSE estimation of noise 
power, and a simple estimation bias correction method.  The 
proposed algorithm provides a low-complexity alternative to the 
popular MS algorithm while it achieves similar or better 
performance for non-stationary noise sources.  

5. REFERENCES 
[1] R. Martin, “Noise power spectral density estimation based on 
optimal smoothing and minimum statistics,” IEEE Trans. Speech, 
Audio Processing, vol. 9, no. 5, pp. 504-512, 2001.  

[2] A. Dempster, N. Laird, and D. Rubin. “Maximum likelihood 
from incomplete data via the EM algorithm,”  Journal of the Royal 
Statistical Society, Series B, 39(1):1–38, 1977 

[3] J. S. Erkelens and R. Heusdens, “Fast noise tracking based on 
recursive smoothing of MMSE noise power estimates,” in Proc. 
ICASSP 2008.

[4] S. O. Rice, “Statistical properties of a sine wave plus random 
noise,” Bell System Technical Journal, vol. 27, pp. 109-157, 1948. 

[5] Y. Ephraim and D. Malah, “Speech enhancement using a 
minimum mean square error short time spectral amplitude 
estimator,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 
32, pp. 1109-1121, Dec. 1984. 

[6] Fisher, William M.; Doddington, George R. and Goudie-
Marshall, Kathleen M., "The DARPA Speech Recognition 
Research Database: Specifications and Status". Proceedings of 
DARPA Workshop on Speech Recognition: 93-99

[7] ITU-T Rec. P.56, Objective Measurement of Active Speech 
Level - Telephone Transmission Quality Objective Measuring 
Apparatus.

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

pl
itu

de

0 5 10 15 20 25
-60

-55

-50

-45

-40

-35

Time (s)

N
oi

se
 L

ev
el

 (
dB

)

Noisy speech
Clean speech

Ideal
Proposed
MS

a) Street noise, SNR = 6 dB 
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b) Babble noise, SNR = 6 dB 
Fig. 2 Output of the noise variance estimation algorithms as a 

function of time (of frequency bin k=10).
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