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ABSTRACT

In this paper, we propose to combine the Kalman filter with a recent
speech enhancement technique, called the phase spectrum compen-
sation procedure, or PSC. More specifically, we apply the PSC tech-
nique to initialise the Kalman filter, whereby PSC is used to clean
the noisy speech prior to LPC estimation for the Kalman recursion.
We refer to the combined technique as the Kalman-PSC filter. Us-
ing an objective speech quality measure, formal subjective listening
tests and spectrogram analysis, we show that the proposed method
results in improved speech quality.

Index Terms— Kalman filter, phase spectrum compensation
(PSC), speech enhancement

1. INTRODUCTION

The Kalman filter is an unbiased, time-domain, linear MMSE es-
timator that was first proposed for speech enhancement by Paliwal
and Basu [1]. In speech enhancement we are primarily interested in
suppression of noise from noise corrupted speech so that the speech
quality and intelligibility are improved. The Kalman filter has been
of particular interest in speech enhancement, due to several advan-
tages it has over other spectral domain-based enhancement methods:
(1) the speech production model is made inherent in the Kalman re-
cursion equations; (2) enhanced speech from the Kalman filter con-
tains no ‘musical noise’ [2];1 and (3) the Kalman filter can process
non-stationary speech signals. The enhancement performance of the
Kalman filter is somewhat dependent on the accuracy and reliabil-
ity of the linear prediction coefficient (LPC) estimates. Ideally, LPC
coefficients estimated from the clean speech should be used for en-
hancement of the noisy speech using the Kalman filter (as was done
in [1]). However, in practice this is not possible as the clean speech
is not known a priori and the LPC coefficients have to be estimated
from the noisy speech. Depending on the noise characteristics and
the signal-to-noise ratio (SNR), the LPCs obtained from the noisy
speech using the conventional autoregressive (AR) spectral estima-
tion methods (such as the auto-correlation method) may be inaccu-
rate and unreliable, leading to a suboptimal Kalman filter.

One method of overcoming this problem is to use an iterative
LPC estimation method [3], where in each iteration, the Kalman fil-
ter enhances the speech prior to LPC estimation. While this method
generally improves the SNR after a few iterations, the enhanced
speech is often distorted and accompanied by some residual noise.
The limitation of the iterative method may stem from the fact that the
Kalman filter, in the first iteration, is itself dependent on the avail-
ability of accurate LPC estimates.

1Assuming that accurate linear prediction coefficients are available.

In this paper, we propose to combine the Kalman filter with a re-
cent speech enhancement technique called the phase spectrum com-
pensation (PSC) [4, 5]. More specifically, we use the PSC technique
to enhance the noisy speech prior to LPC estimation for the Kalman
recursion. We refer to the proposed approach as the Kalman-PSC
filter. We evaluate the performance of the combined technique us-
ing both subjective and objective measures, as well as spectrogram
analysis. Our experimental study, on enhancing speech corrupted
by additive white noise, shows that the Kalman-PSC filter improves
speech quality and compares favourably with other speech enhance-
ment methods.

2. KALMAN FILTER FOR SPEECH ENHANCEMENT

2.1. Conventional Kalman filter

If the clean speech is represented as x(n) and the additive noise
signal as v(n), then the noise-corrupted speech y(n), which is the
only observable signal in practice, is expressed as:

y(n) = x(n) + v(n). (1)

In the Kalman filter, that is used for speech enhancement (see Fig.
1), v(n) is a zero-mean white Gaussian noise that is uncorrelated
with x(n).2 A pth order linear predictor is used to model the speech
signal:

x(n) = −

pX
k=1

akx(n− k) + w(n), (2)

where {ak, k = 1, 2, . . . , p} are the LPCs and w(n) is the white
Gaussian excitation with zero mean and a variance of σ2

w. Rewriting
Eqs. (1) and (2) using state vector representation gives:

x(n) = Ax(n− 1) + dw(n) (3)
y(n) = c

T
x(n) + v(n), (4)

where x(n) = [x(n), x(n− 1), . . . , x(n− p + 1)]T is the ‘hidden’
state vector, A is the linear prediction state transition matrix, while
d = [1, 0, . . . , 0]T and c = [1, 0, . . . , 0]T are the measurement
vectors for the excitation noise and observation, respectively. The
linear prediction state transition matrix is given by:

A =

2
666664

−a1 −a2 . . . −ap−1 −ap

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

3
777775

. (5)

2Coloured noise can be modelled by another linear predictor model,
which can be augmented into the Kalman state vector equations [3].
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Fig. 1. Block diagram of the Kalman filter showing different LPC es-
timation methods (bolded variables are vectors). LPCs are estimated
from: (a) clean speech x(n); (b) noise-corrupted speech y(n); (c)
Kalman-enhanced speech (iterative LPC estimation).

The Kalman filter calculates x̂(n|n), which is an unbiased and
linear MMSE estimate of the state vector x(n), given the current
sample of corrupted speech y(n), by using the following recursive
equations:

x̂(n|n− 1) = Ax̂(n− 1|n− 1) (6)
P (n|n− 1) = AP (n− 1|n− 1)AT + σ

2

wdd
T (7)

K(n) = P (n|n− 1)c
h
σ

2

v + c
T
P (n|n− 1)c

i
−1

(8)

x̂(n|n) = x̂(n|n− 1) + K(n)[y(n)− c
T
x̂(n|n− 1)] (9)

P (n|n) = [I −K(n)cT ]P (n|n− 1). (10)

2.2. Accurate estimation of linear prediction coefficients

Ideally, the LPCs (to which we will refer to as ‘clean LPCs’) should
be estimated from the clean speech in order for the Kalman filter to
attain its full potential (see Fig. 1, method (a)). However, in practice
only the noise-corrupted speech y(n) is available, so the LPCs (to
which we will refer to as ‘noisy LPCs’) need to be estimated from
the noisy speech (see Fig. 1, method (b)). As has been reported
numerous times in the literature (recently in [6]), the performance
of the Kalman filter based on the noisy LPCs is suboptimal, where
the enhanced speech is always accompanied by a large amount of
wideband residual noise.

Gibson et al. [3] reported an iterative LPC estimation method,
where each frame of speech is first enhanced by the Kalman filter
initialised with the noisy LPCs (Fig. 1, method (b)). Then a new set
of LPCs are estimated from the Kalman-enhanced speech (Fig. 1,
method (c)). Convergence is usually achieved after three iterations,
along with a large SNR improvement. The enhanced speech from
the iterative Kalman filter is free from the wideband residual noise
that plagued the non-iterative method, however some ‘musical-like’
artifacts do remain. The enhanced speech also suffers from distortion
which can degrade intelligibility. A weakness of this method is the
use of the noisy LPCs in the first iteration of the Kalman filter. The
lack of accurate LPCs for the Kalman filter during this stage means
that it will provide a poor initial estimate of the clean speech.
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Fig. 2. Block diagram of the proposed Kalman-PSC filter.

2.3. Proposed approach

Recently, a novel approach to speech enhancement called the phase
spectrum compensation (PSC) has been proposed in [4, 5]. PSC is
based on the analysis-modification-synthesis (AMS) framework. In
the PSC method, the noisy phase spectrum gets compensated for ad-
ditive noise distortion. The PSC method uses a synthesis-based can-
cellation to attenuate lower energy signal components much more
than higher energy components, resulting in background noise re-
duction. Both short-time magnitude and phase spectra play impor-
tant roles in the speech enhancement process. This is unlike tra-
ditional AMS-based speech enhancement techniques. Importantly,
PSC manages to reduce background noise without significantly dis-
torting high-energy components belonging to the speech signal. The
above properties of the PSC method make it of interest to us in the
present work. We propose to employ the PSC procedure to en-
hance noisy speech prior to LPC computation within the Kalman
filter framework. We refer to the proposed approach as Kalman-PSC
filter. A block diagram of the proposed method is shown in Fig. 2.
For comparison, we also investigate the use of the popular MMSE
algorithm [7] in-place of the PSC method within the Kalman filter.
We refer to this approach as the Kalman-MMSE filter.

3. EXPERIMENTS

3.1. Speech corpus

In our experiments we use the NOIZEUS speech corpus, which is
composed of 30 phonetically-balanced sentences belonging to six
speakers [8]. The corpus is sampled at 8 kHz and filtered to simulate
receiving frequency characteristics of telephone handsets. For our
experiments we generate a stimuli set corrupted by additive white
Gaussian noise at four SNR levels: 0, 5, 10 and 15 dB.

3.2. Evaluation methods

In this study, we conducted both subjective and objective evaluations
as well as spectrogram analysis. The subjective evaluation was in a
form of AB listening tests to determine subjective method prefer-
ence [9]. Two NOIZEUS sentences, belonging to different speakers,
were included in these tests. White noise case (10 dB SNR) was
investigated. Nine treatment types were used, seven corresponding
to speech enhancement methods and two to clean and noisy speech.
Stimuli pairs were played back to the listeners. The listeners were
asked to make a subjective preference for each stimuli pair. Fourteen
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Fig. 3. Subjective results in terms of average preference scores for
additive white Gaussian noise at 10 dB SNR.

English speaking listeners participated in the listening tests. The ob-
jective evaluation was carried out on the NOIZEUS corpus using an
objective speech quality measure, namely PESQ.

3.3. Speech enhancement methods

In addition to the proposed method, various forms of the Kalman fil-
ter used for speech enhancement were included in our experiments.
For completeness, the PSC and MMSE methods were also added. A
total of seven speech enhancement methods, as listed below, were
considered in our evaluations.

• Kalman-Clean – Kalman filter with clean LPCs
(oracle case) [1]

• Kalman-Noisy – Kalman filter with noisy LPCs [6]

• Kalman-Iter – Kalman filter with iterative LPC estimation
(three iterations) [3]

• Kalman-PSC – Kalman filter with LPCs estimated from noisy
speech enhanced using the PSC algorithm (proposed)

• Kalman-MMSE – Kalman filter with LPCs estimated from
noisy speech enhanced using the MMSE algorithm

• PSC – the phase spectrum compensation procedure [5]

• MMSE – the MMSE algorithm [7]

4. RESULTS AND DISCUSSION

The results of the subjective tests, along with their standard error
bars, are shown in Fig. 3. The subjective results are in terms of
average (method) preference scores. A score of one for a partic-
ular method, means that the method was preferred over all other
methods every time. Conversely, a score of minus one means that
the method was never preferred. As can be seen from the subjec-
tive results, all enhancement methods were preferred over the noisy
speech. The most preferred method was the Kalman-Clean method.
This is not surprising as Kalman-Clean is an oracle case method,
where clean LPCs are made available during the enhancement pro-
cess. At the other end of the scale, the least preferred method was
Kalman-Noisy. This is also to be expected, as this method uses the
noisy LPCs, which is suboptimal as discussed in Section 2.2. The
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Fig. 4. Objective results in terms of mean PESQ improvement scores
for additive white Gaussian noise at various input SNRs.

non-Kalman methods, namely MMSE and PSC, performed some-
what worse than the remaining Kalman methods. Overall, the lis-
tener preference for the Kalman-PSC method was found to be sig-
nificantly higher than the preference for the Kalman-Noisy, MMSE,
PSC, Kalman-MMSE and Kalman-Iter methods. Notably, the sub-
jective preference for Kalman-PSC was found to be comparable to
the preference for Kalman-Clean. These results suggest that em-
ploying the PSC procedure on noisy speech prior to LPC estimation
leads to improved LPC estimates. This can be attributed to the fact
that PSC attenuates lower energy signal components much more than
higher energy components, thus reducing background noise without
significantly distorting the speech signal.

The results of the objective experiment, in terms of mean PESQ
improvement scores, are shown in Fig. 4. The objective results show
a trend similar to the subjective results discussed in the proceeding
paragraph. In terms of objective results, Kalman-PSC also works
better than most of the other methods. Only exception is Kalman-
Iter, which seems to perform slightly better than Kalman-PSC. As
we know the objective measures do not always reflect the subjective
findings. The reason why subjective preference for Kalman-Iter is
somewhat low can be explained by the presence of distracting resid-
ual noise that can be seen in the Kalman-Iter enhancement spectro-
gram in Fig. 5(e).

From the spectrograms in Fig. 5 it can also be seen that the
noisy speech enhanced using Kalman-PSC and Kalman-Clean (Fig.
5(f,g), respectively) contains significantly less residual noise than
the speech enhanced using Kalman-Noisy, Kalman-MMSE and
Kalman-Iter methods (Fig. 5(c,d,e), respectively).
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5. CONCLUSION

In this paper, we have proposed the Kalman-PSC filter. In the pro-
posed method, the phase spectrum compensation (PSC) procedure is
employed to enhance the noisy speech prior to LPC estimation for
the Kalman recursion. Using an objective speech quality measure,
spectrogram analysis, as well as formal subjective listening tests, we
showed that the proposed method results in improved speech quality.
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[4] K. Wójcicki, M. Milacic, A. Stark, J. Lyons, and K. Pali-
wal, “Exploiting conjugate symmetry of the short-time Fourier
spectrum for speech enhancement,” IEEE Signal Process. Lett.,
vol. 15, pp. 461–464, 2008.

[5] A. Stark, K. Wojcicki, J. Lyons, and K. Paliwal, “Noise driven
short time phase spectrum compensation procedure for speech
enhancement,” in Proc. Int. Conf. Spoken Language Processing
(INTERSPEECH-ICSLP), Sep. 2008.

[6] S. So and K. Paliwal, “A long state vector Kalman filter for
speech enhancement,” in Proc. Int. Conf. Spoken Language Pro-
cessing (INTERSPEECH-ICSLP), Sep. 2008.

[7] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude es-
timator,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32,
pp. 1109–1121, Dec. 1984.

[8] Y. Hu and P. Loizou, “Subjective comparison of speech enhance-
ment algorithms,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig-
nal Processing (ICASSP), 2006, pp. 153–156.

[9] P. Sorqvist, P. Handel, and B. Ottersten, “Kalman filtering for
low distortion speech enhancement in mobile communication,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
(ICASSP), vol. 2, 1997, pp. 1219–1222.

Fr
eq

ue
nc

y 
(k

H
z)

(a)

0

1

2

3

Fr
eq

ue
nc

y 
(k

H
z)

(b)

0

1

2

3

Fr
eq

ue
nc

y 
(k

H
z)

(c)

0

1

2

3

Fr
eq

ue
nc

y 
(k

H
z)

(d)

0

1

2

3
Fr

eq
ue

nc
y 

(k
H

z)

(e)

0

1

2

3

Fr
eq

ue
nc

y 
(k

H
z)

(f)

0

1

2

3

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

(g)

0 0.5 1 1.5 2 2.5
0

1

2

3

Fig. 5. Spectrograms of sp10.wav utterance, ‘The sky that morning
was clear and bright blue,’ by a male speaker from the NOIZEUS
corpus: (a) clean speech; (b) speech degraded by white noise (10
dB SNR); as well as noisy speech enhanced using: (c) Kalman-
Noisy; (d) Kalman-MMSE; (e) Kalman-Iter; (f) Kalman-PSC; and
(g) Kalman-Clean.
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