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ABSTRACT

The performance of conventional VTLN for mis-matched train and
test speaker conditions (e.g. adult-train child-test) does not approach
the performance of matched speaker conditions (e.g. child-train
child-test). In this paper, we investigate this problem and propose
methods to reduce this gap in performance. We use our recently
proposed linear transformation approach to VTLN, that also enables
us to study the effect of Jacobian unlike conventional VTLN. The
main advantage of transform-based VTLN over adaptation based
approaches (like CMLLR), is that it does not require any matrix
estimation. We argue that the degraded VTLN performance under
mismatched speaker conditions is due to the significant frequency
warping that is necessary for normalization which leads to a mis-
match between the correlation in the feature components of the test
data and the covariance structure of the trained/normalized model.
We show that the use of a global de-correlating transform (MLLT)
leads to improved VTLN performance. We finally show that using
both Jacobian and MLLT together improves the VTLN performance
for mis-matched cases with the performance approaching that of
matched speaker conditions.

Index Terms— Speaker Normalization, VTLN, Linear Trans-
formation, Jacobian, MLLT

1. INTRODUCTION

In this paper, we address the problem where the HMM models are
trained on one class of speakers but tested on a significantly differ-
ent class of speakers. For example, the models may be trained using
adult speech data but used for recognizing children speech. This
may be necessary since sufficient training data may not be available
to build a full fledged model for children. In such cases, there is sig-
nificant mismatch between train (adult) speakers and test (children)
speakers. This leads to significant degradation in recognition perfor-
mance for children when compared to adults [1, 2]. One of the most
commonly used methods to reduce this mismatch is to perform vocal
tract length normalization (VTLN) [3]. Although VTLN helps im-
prove the recognition performance for mismatched speakers, there
is still a significant gap in performance between the matched and
mismatched speaker condition. The goal of this paper is to propose
methods to reduce this gap in performance.

Speaker normalization is achieved in VTLN by warping the fre-
quency spectrum of the speech signal, i.e.

SA(f) = SB(αABf) (1)
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where αAB is the frequency-warp factor used to scale the spectra
of speaker B to match the spectra of speaker A. In practice, since
there is no reference speaker, a maximum likelihood (ML) based grid
search is used to estimate the optimal warp factor α which is given
by:

α̂i = arg max
α

Pr(Cα

i |λ, Wi)|dCα

i /dCi| (2)

where, Cα

i are the feature vectors of the ith utterance frequency-
warped byα. λ is the SI or previous iteration VTLNmodel andWi is
the true transcription in the case of α-estimation during training and
the first pass recognition output during testing.The term |dCα

i /dCi|
is the Jacobian of the transformation and it accounts for the mis-
match in the likelihood calculation of the warped features Cα

i with
respect to the SI or previous iteration model (λ). This term is usually
ignored in conventional VTLN, since the transformation between
warped and unwarped cepstral features cannot be easily determined.

Recently we have shown that, warped features Cα

i can be ob-
tained from the conventional MFCC features through a linear trans-
formation, Aα [4, 5, 6]. In [4], we discuss the problems of linear
transformation approach proposed in [7]. For this paper, we use the
method proposed in [6], where the matrix Aα is analytically com-
puted for each α and stored. Since, a linear transformation for VTLN
can be defined, the Jacobian can be accounted for and is simply the
determinant of the transformation. We show that the use of Jacobian
helps improve the normalization performance in matched speaker
conditions, but degrades the performance in mis-matched speaker
conditions. The frequency-warping used in vocal tract length nor-
malization attempts to normalize the spectra of different speakers ut-
tering the same sound. Usually males have longer vocal tracts com-
pared to females and children, resulting in lower frequency formants.
In order to match the formant frequencies of a male speaker, the fe-
male or child speaker’s speech spectra needs to be compressed. We
hypothesize in this paper that, significantly warping the frequency
spectrum will result in increased correlation in the warped features
which may not be modeled well by the covariance structure in the
train/normalized model which usually contain a mixture of diago-
nal covariance Gaussian components. This leads to loss of likeli-
hood when using the warped features of the test data with the trained
models, and the use of Jacobian (which assumes proper likelihood
calculation) results in over-compensation and hence degradation in
performance.

In this paper, we address the issue of correlations in warped fea-
tures and also study the effect of Jacobian during the transformation
in VTLN for the mismatched case. To reduce the correlation, we use
a global de-correlating transform like MLLT (maximum likelihood
linear transformation) [8, 9]. We show that the use of this decorrelat-
ing transform together with the Jacobian will significantly improve
the recognition performance in VTLN and also reduce the gap in
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performance between matched and mis-matched speaker conditions.
The paper is organized as follows: In Section 2, we review the

idea of linear transform for VTLN and discuss how Jacobian is ac-
counted for. We also discuss the effect of Jacobian on the recogni-
tion performance. In Section 3, we show the effects of correlations
on the recognition performance, especially when there is significant
frequency-warping. Later in Section 4, we introduce the idea of a
global decorrelating transform that can reduce the correlations in the
data. In Section 5, we discuss the experimental setup used in our
experiments, followed by results and discussion in Section 6. We
finally present our conclusions in Section 7.

2. VTLN USING LINEAR TRANSFORM (LT-VTLN)
VTLN is used in most state of the art speech recognition systems
to reduce inter-speaker variability and improve the performance
of speaker independent (SI) automatic speech recognition (ASR).
VTLN is attractive when compared to transform based adaptation
since it requires very little test data to estimate the single frequency
warp factor. The main disadvantage with VTLN is that, it requires
generation of features for each warp-factor before an optimal esti-
mate of α is found using Eq. (2). We have recently shown that the
warped features Cα can be generated using a linear transformation
(LT) of conventional (un-warped) MFCC features, C [6], i.e.

Cα = AαC (3)
where the warp-matrix Aα can be analytically computed given the
warping function g(α, f). In this paper, we only consider piece-
wise linear warping. Apart from generating the warped features us-
ing the LT, the Jacobian during α estimation in Eq. (2) can also be
accounted. The Jacobian will be simply the determinant of Aα in
this case.

It is well known that the likelihood of the observed sequence
(Ct) with respect to the model parameters (μ,Σ) and the LT matrix
(Aα) is equivalent to applying the LT on the observation vectors and
accounting for the Jacobian of the transformation [10].

L(Ct; μ,Σ, (Aα)−1) = N (Aα
Ct; μ,Σ) + log(|Aα|) (4)

Note that this is similar to the CMLLR approach to adaptation, ex-
cept that, in this case the VTLN matrix, Aα, is already precomputed
for each α or equivalently we can transform the features and account
for the Jacobian. Similar to conventional VTLN, we estimate the
warp-factor for each training utterance, normalize the features and
estimate a normalized model. This is repeated a few iterations. Dur-
ing testing , we choose the appropriate pre-computed matrix Aα to
obtain normalized features of the test data and do the final recogni-
tion.

Table 1 and Table 2 show the recognition performance for
matched and mis-matched cases respectively using our recently pro-
posed linear-transformation (LT) approach [6]. We have shown that
the performance of conventional and the proposed LT-VTLN (with
no Jacobian) give comparable performance in [6]. The details of
the experimental set up and databases will be discussed in detail in
Section 5. These tables show the normalization performance with
and without the use of Jacobian. From the tables, we make the
following observations:
• Accounting for Jacobian has provided improved recognition per-
formance on all tasks in matched cases.
• Accounting for Jacobian has degraded the recognition perfor-
mance on all tasks in mis-matched cases.

VTLN performs speaker normalization by scaling the frequency
spectrum of the speech signal. The scaling/warping factor is esti-
mated with respect to the SI or the previous iteration VTLN model

Table 1. Recognition Performance of LT-VTLN With and Without
Jacobian Compensation for Matched Cases

TIDIGITS RM-Task OGI
Method F-F C-C A-A A-A

Baseline (No-VTLN) 99.79 99.71 96.49 96.95
LT-VTLN 99.79 99.62 96.92 97.40

LT-VTLN + JACOB 99.81 99.75 97.07 97.64

• A-A – Adult train - Adult test • F-F – Female train - Female test
• C-C – Child train - Child test

Table 2. Recognition Performance of LT-VTLN With and Without
Jacobian Compensation for Mis-matched Cases

TIDIGITS OGI
Method M-F M-C A-C

Baseline (No-VTLN) 94.52 69.08 86.20
LT-VTLN 99.49 96.20 92.91

LT-VTLN + JACOB 99.08 87.50 90.93

• A-C – Adult train - Child test • M-F – Male train - Female test
•M-C – Male train - Child test

using Eq. (2). The warp factor is restricted to be in the search range
from 0.80 to 1.20 based on physiological arguments and usually in-
crements of 0.02 are followed. When there is significant mis-match
between the train and test sets the warp factors are usually far from
unity, i.e. for example, if we use male data to train the model and are
using it to recognize children speech, all the warp factors for child
speakers will be close to 0.80.

We hypothesize that, significant frequency warping for perform-
ing speaker normalization will introduce correlations in the compo-
nents of the warped features. These correlations are not modeled
well by the covariance structure in the trained/normalized model.
This mismatch results in the loss of likelihood when mis-matched
speakers are tested against this model. Therefore, in Table 2, the use
of Jacobian (which assumes proper likelihood calculation) results in
over-compensation leading to degradation in performance.

In order to understand the reason for this degradation in mis-
matched cases after accounting for Jacobian, we perform a set of
experiments to understand whether correlations introduced due to
warping have any role. These experiments are done in an adaptation
frame-work and are discussed in more detail in the next section.

3. ADAPTATION EXPERIMENTS TO UNDERSTAND
EFFECT OF CORRELATIONS IN WARPED FEATURES

In CMLLR adaptation [10], both the means and covariances are
transformed by the same matrix, and is equivalent to a feature trans-
formation as shown in Eq. 4. We argue that while the transformation
of the mean helps bring the model closer to the mismatched data, the
use of the same transformation for transforming the covariance of
the model results in a mismatch between the covariance of the fea-
ture and model components. Note that there is an implicit Jacobian
compensation in CMLLR as seen in Eq. 4. Unlike VTLN-matrix,
in this case the CMLLR matrix is estimated in a ML frame-work.
We also show the adaptation results for MLLR - MEAN [11] (the
estimated adaptation matrix is used to transform only the means,
the variances are un-affected) and MLLR - MEAN+VAR [12] (es-
timates a separate adaptation matrix for both means and variances).
The recognition results for these various transformation approaches
are presented in Table 3. We use two different set of mis-matched
cases from TIDIGITS, namely male train - female test (M-F) and
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Table 3. Recognition Performance of Various Adaptation Based Ap-
proaches for Mis-matched Cases on TIDIGITS

TIDIGITS
Method M-F M-C

Baseline (No-VTLN) 94.52 69.08
CMLLR 99.42 92.85

MLLR - MEAN 99.49 95.18
MLLR - MEAN+VAR 99.51 95.58

male train - child test (M-C). We observe that:
• In both the mismatched cases, CMLLR has inferior recogni-
tion performance compared to other adaptation based approaches.
Applying a transformation on the test data features might result in
components being correlated. These correlated features may not be
properly modeled by the covariance matrices of the train model (and
Jacobian over-compensation may occur). This mismatch results in
performance degradation.
• In the case of MLLR - MEAN the variances are the same as in the
original train model and only the means of the adapted model are
transformed. We argue that there is less mismatch in the correlation
structure with respect to the train model and hence the recognition
performance is better than CMLLR.
• In case of MLLR - MEAN+VAR, there is a different transforma-
tion for both means and variances. We observe that providing this
freedom has provided gain over both the other adaptation based ap-
proaches. This is because, the covariance structure of the adaptation
data are also now properly modeled using a separate matrix.

These results show that using a single transformation matrix for
adapting both means and variances might result in degraded perfor-
mance in the mis-matched cases. This is because the Jacobian over-
compensates the likelihood. This also explains the reason for de-
graded performance of VTLN in the LT framework when Jacobian
is accounted in mis-matched cases in Table 2.

In order to address the problem of differences in correlation
structure in the mismatched case, we try to estimate a global de-
correlating transform like MLLT using the trained model and small
amount of train data (different from test set) from mismatched
speaker set. This will help reduce the mismatch in the covariance
structure and our experiments, shown later in the paper, indicate im-
proved performance. In the next section, we briefly review MLLT.

4. BRIEF REVIEW OF MLLT

Maximum Likelihood Linear Transformation (MLLT) [8] is a spe-
cial case of Heteroscedastic Linear Discriminant Analysis (HLDA)
[9]. HLDA is a class discriminant analysis method that does not
assume equal covariance between the classes, as opposed to Linear
Discriminant Analysis (LDA). It finds a projection of the n dimen-
sional feature vectors to a new space and constrains all the classes in
the projected space to have the same mean and covariance in the last
n−p (p < n) components. The first p components in the new space
have different mean and covariance among the classes. Hence the
class discrimination is contained only in the first p components. The
projecting transform is obtained using maximum likelihood crite-
rion. Effectively HLDA transforms the n dimensional features space
to a p dimensional space and thus reduces the dimensionality from
n to p.

When HLDA is configured with p = n, i.e., when there is no
dimensionality reduction it is known as MLLT. In this paper we have
used the case of MLLT where diagonality constraint is forced on
the covariance matrices in the projected feature space so that MLLT

works like a decorrelating transform for the feature vectors. MLLT
aims at minimizing the loss in likelihood between full and diagonal
covariance Gaussian models.

5. RECOGNITION EXPERIMENTS
The recognition experiments are performed on three different
databases, which include Resource Management (RM) task, TIDIG-
ITS and Number corpus of OGI. RM and TIDIGITS are wide-band
speech having a sampling frequency of 16KHz and 20KHz respec-
tively. OGI is a narrow-band telephone based continuous digit
corpus with a sampling frequency of 8 KHz. RM is an adult-speaker
database consisting of 3990 utterances for train and 300 for test.
TIDIGITS consists of males (4235 for train, 4311 for test), females
(4388 for train, 4388 for test) and children(3925 for train and 3847
for test), whereas OGI also consists of adults (6078 for train, 2169
for test) and children (2798 for test) data. Based on this we formulate
different combination of experiments for matched and mis-matched
conditions.

In TIDIGITS and OGI, the digits are modeled as whole word
simple left-to-right HMMs without skips and have 16 states per word
with 5 diagonal covariance Gaussian mixtures per state. On the RM
database we perform the recognition task using state-tied cross-word
triphones. We use phonetic decision tree based clustering for tying
the states. The phone HMM models consist of 3 states with 6 diag-
onal covariance Gaussian mixtures per state. In both the tasks, we
used a silence model having 3 states and a single state short pause
model tied to the middle state of the silence model. The features in
all tasks are of 39 dimensions comprising normalized log-energy,
c1, . . . , c12(excluding c0) and their first and second order deriva-
tives. In all cases, cepstral mean subtraction was applied. For per-
forming VTLN, only un-warped features are generated and all the
warped features are generated on the fly using the linear transform
matrices as shown in Eq. 3. Note that the matrices for different warp-
factors, α, are pre-computed for the specific warping function.

6. RESULTS AND DISCUSSION
In Table 4, we present results on two combination of experiments
namely matched and mis-matched speaker conditions. For the
matched case, the experiments include female train - female test
(F-F) and child train - child test (C-C) from TIDIGITS, adult train
- adult test (A-A) from RM task and adult train - adult test (A-A)
from OGI. For mis-matched conditions, the experiments include
male train - female test (M-F) and male train - child test (M-C) from
TIDIGITS and adult train - child test (A-C) from OGI.

We have already discussed the results about Jacobian compensa-
tion in Section 2, where we have shown that Jacobian compensation
provides improved recognition performance for matched speaker
conditions but provides degradation in performance for mis-matched
speaker conditions. We have argued in Section 3 that the degrada-
tion in performance is due to differences in correlation structure
between matched and mismatched data which results in Jacobian
providing over-compensation during likelihood calculation. The
use of a global de-correlating transform reduces this mismatch in
correlation structure and hence the use of subsequent Jacobian com-
pensation should help improve the recognition performance. We
present the results for both matched and mis-matched cases after
applying MLLT followed by Jacobian compensation.

We make the following observations in matched cases:
• Applying MLLT without Jacobian (LT-VTLN+MLLT) has pro-
vided improvement over LT-VTLN.
• Accounting for Jacobian after MLLT (LT-VTLN + MLLT + JA-
COB) has provided additional gain in the performance.
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Table 4. Recognition performance of the proposed LT with and without Jacobian Compensation as well as with and without MLLT for both
matched and mis-matched speaker conditions.

Matched Mis-matched
Method TIDIGITS RM-Task OGI TIDIGITS OGI

F-F C-C A-A A-A M-F M-C A-C
Baseline (No-VTLN) 99.79 99.71 96.49 96.95 94.52 69.08 86.20

LT-VTLN 99.79 99.62 96.92 97.40 99.49 96.20 92.91
LT-VTLN + JACOB 99.81 99.75 97.07 97.64 99.08 87.50 90.93
LT-VTLN + MLLT 99.79 99.68 97.54 97.69 99.74 98.98 93.73

LT-VTLN + MLLT + JACOB 99.82 99.79 97.62 97.99 99.79 99.31 93.73

We make the following observations in mis-matched cases:
• Applying MLLT without Jacobian has provided improvement over
LT-VTLN.
• Accounting for Jacobian after MLLT has provided additional gain
in the recognition performance except for the case of OGI where it
remains same. This is in contrast to the performance when Jacobian
compensation is used without MLLT.
• The recognition results of matched TIDIGITS F-F and C-C are
almost similar or close to the mis-matched cases of TIDIGITS M-F
and M-C in the case of LT-VTLN + MLLT + JACOB.

We could not perform the matched case experiment in OGI as
there was no training data available for children. Note that since
OGI is telephone-speech data (and bandlimited to less than 3400
Hz), children will have poorer performance than adults.

The results indicate that, if we can reduce the differences in the
correlation structure in warped features of test data and train model
(using MLLT) and also account for the Jacobian during α estima-
tion in VTLN, the recognition performance can be significantly im-
proved. In this case, the performance of mis-matched cases in TI-
DIGITS is close to the matched cases. In all the cases, we observe
that the recognition performance has improved significantly over
VTLN after applying a global decorrelating transform and account-
ing for Jacobian, indicating that both play a major role. We point
out the case of M-C in TIDIGITS, that has shown significant im-
provements at every stage and is also the extreme case of mis-match
among all the combinations considered in this paper. We observe
that, after the application of MLLT and Jacobian, the performance
of M-C approaches the case of C-C.

7. CONCLUSION

In this paper, we have proposed methods to improve the performance
of VTLN in mis-matched cases. We have used our recently pro-
posed linear transform approach to VTLN which allows us to study
the effect of Jacobian on the warp factor estimation. We showed
through experiments that, although matched cases show improve-
ments with Jacobian compensation, the mis-matched cases have de-
graded recognition performance after Jacobian compensation. We
hypothesized and corroborated with the experiments that the signif-
icant frequency warping in mis-matched cases increased the corre-
lations in the feature components of the warped features which lead
to a mismatch with the covariance structure of the trained model.
This leads to an underestimation in the likelihood calculation and
hence the use of Jacobian ( which assumes proper likelihood cal-
culation) results in over-compensation of the likelihood resulting in
performance degradation in mis-matched cases. We have proposed
the use of a global de-correlating transform, MLLT, that would re-
duce the mis-match in the covariance structure between test data and
train model. We show that the use of MLLT indeed improved the
recognition performance both in matched and mis-matched speaker

conditions. But more importantly the use of Jacobian in addition to
MLLT gives rise to further improvement in the recognition perfor-
mance in the mis-matched cases also. Further, the performance of
mis-matched cases are now close to matched speaker case. There-
fore, we conclude that taking care of the correlations introduced by
warping the data and accounting for the Jacobian during warp factor
estimation will provide significant gains in the recognition perfor-
mance over VTLN.
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