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ABSTRACT

The use of the PC and Internet for placing telephone calls will
present new opportunities to capture vast amounts of un-transcribed
speech for a particular speaker. This paper investigates how to best
exploit this data for speaker-dependent speech recognition. Super-
vised and unsupervised experiments in acoustic model and language
model adaptation are presented. Using one hour of automatically
transcribed speech per speaker with a word error rate of 36.0%,
unsupervised adaptation resulted in an absolute gain of 6.3%, equiv-
alent to 70% of the gain from the supervised case, with additional
adaptation data likely to yield further improvements. LM adapta-
tion experiments suggested that although there seems to be a small
degree of speaker idiolect, adaptation to the speaker alone, without
considering the topic of the conversation, is in itself unlikely to
improve transcription accuracy.

Index Terms— Speaker adaptation, acoustic model adaptation,
language model adaptation, unsupervised adaptation, speech recog-
nition

1. INTRODUCTION

One of the effects of the current mass migration to the Internet as
a means of communication is that phone calls will increasingly be
made online, with smart devices. Coupled with exponential growth
in data storage, this will present new opportunities to automatically
capture vast amounts of speech for a particular speaker. Speech
recognition will thus have an opportunity to exploit unprecedented
amounts of speaker-labeled data for speaker-dependent (SD) recog-
nition, and potentially improve recognition accuracy substantially.

Commercial dictation systems are now available that report
near perfect accuracies. This is largely made possible by the use
of a formal speaking style, the availability of high-quality and un-
compressed audio, and leveraging large amounts of accumulated
speaker-labeled training data. Recognition of phone calls could like-
wise utilise knowledge of the speaker identity for speaker adaptation
and, if captured before transmission, could also be performed on
high-quality audio. Smart devices, capable of placing telephone
calls and simultaneously recording speech or performing real-time
recognition, will soon become commonplace. The medium of the
phone call is a natural way to collect speech data, as there is no
burden placed on the user to complete any sort of initial or ongoing
training, other than carrying on with their usual daily activities.
Unlike dictation systems, if out-of-the-box transcription accuracy is
not satisfying or useful, there is no inconvenience to users, who in
any case would still be making the telephone calls. Their data could
be used to continuously and transparently improve their models
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over time. Should this lead to significant improvements in tran-
scription accuracy, a wide range of valuable applications become
realisable such as search-able transcripts and real-time multi-modal
tele-conferencing.

This paper demonstrates the gains achievable by utilising the
speaker identity and up to an hour of adaptation data per speaker, by
applying well established techniques in acoustic and language model
adaptation to the domain of conversational telephone speech. The
effect of the amount of data used, the feasibility of capturing speaker
idiolect in an n-gram language model, and the results of supervised
and unsupervised adaptation are also presented.

1.1. Prior work

Acoustic model adaptation and the benefits it provides for SD recog-
nition have been clearly established for some time [1, 2]. However,
much of the work has been in relation to adaptation when the iden-
tity of the speaker is unknown [3], or when the adaptation is based
on only a few minutes or a few utterances of speech [4]. The appli-
cation of telephone calls made from smart devices will have neither
of these limitations, and as such, new techniques may be developed
to exploit the available data.

Language model (LM) adaptation has also seen significant in-
terest [5], primarily in terms of domain adaptation [6, 7] or topic
adaptation [8]. LM adaptation for a particular speaker, however, is
much less well known. The essential task of speaker LM adaptation
is to capture idiolect, which is a linguistic term referring to the vari-
ety of language used by a particular individual. Speaker idiolect has
been used to provide discriminative information for speaker identifi-
cation [9, 10], whilst linguists concede that uniquely characterising a
speaker’s idiolect is likely to be very difficult indeed [11]. Neverthe-
less, it is conceivable that knowledge of the characteristic language
used by the speaker would be useful for training a language model
for speech recognition. It can be difficult to distinguish between the
effects of speaker adaptation and topic adaptation, as speakers may
tend to focus on a certain topic throughout a particular discussion or
series of discussions, for example in lecture speech adaptation [8].
Where attempts have been made to separate the effects of speaker
and topic adaptation, both have been shown to contribute to improve-
ments in decoding accuracy [12, 13].

Section 2 describes the data and procedures used, while the fol-
lowing two sections describe experiments in acoustic and LM adap-
tation respectively.

2. EXPERIMENTAL PROCEDURE

Telephone calls that are recorded before transmission on smart de-
vices may be captured at a high bandwidth, with a close talking mi-
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crophone. This will, in itself, lead to much improved recognition ac-
curacy compared to a low bandwidth signal captured at a telephone
exchange. As such a database with a substantial quantity of speech
per speaker was not available, a subset of the Switchboard-1 (SWB1)
conversational telephone speech corpus was used, which provides an
adequate basis for comparison of the relative gains of SD adaptation.
The 62 speakers with the largest quantity of speech were selected,
with 31 of these used as the development set for tuning, and 31 as
the test set. Sixty minutes of adaptation data (around 13 conversation
sides), and ten minutes of evaluation data were selected per speaker.
Word error rates (WER) are reported as an average across the test
speakers. Normalised hand transcriptions were used for supervised
adaptation experiments.

The baseline acoustic model was a 72-mixture, 18000 tied state
ML-trained HMM set trained on 1700h of data comprising The
Fisher English Corpus Part 1 and 2 [14] (Fisher). The baseline LM
was a Katz back-off 3-grammodel, with 52k/1.4m/1.5m 1/2/3-grams
respectively, also trained on the Fisher set. All experiments used a
22.6k vocabulary. The baseline WER on the SWB Eval2000 evalu-
ation data set was 30.1%. The evaluation data used in experiments
reported below was a more difficult, with a WER of 35.1%.

Unsupervised adaptation experiments used the 1-best word-level
transcript of the adaptation data, produced by decoding with the
baseline acoustic and LMs, with a WER of 36.0%. Posteriors were
estimated for confidence thresholded adaptation experiments using
lattices generated with a beam width of 240.

3. ACOUSTIC MODEL ADAPTATION

Maximum Likelihood Linear Regression (MLLR) [1] andMaximum
A Posteriori (MAP) estimation [2] are two of the most widely used
methods in acoustic model adaptation. MLLR can provide robust
adaptation for limited amounts of adaptation data, by applying a lin-
ear transformation to groups of mixtures, whilst MAP estimation
adjusts the individual mixtures for which observations occur, us-
ing a Bayesian framework to incorporate the background (usually
speaker-independent) model as prior knowledge. In any case, for
optimal decoding accuracy the complexity of the adaptation needs to
be matched to the amount and quality of adaptation data available.

Both global (Global MLLR) and 256-class regression tree-based
(Rtree MLLR) MLLR adaptation were investigated. Speech and
non-speech phones were forcibly separated for transform estimation
and only mean vectors were adjusted. MAP estimation (MAP) with
a priori weight 10 was used to re-estimate mixture means, variances
and weights. All three adaptation approaches were used in both iso-
lated and chained configurations.

As shown in Table 1, Global MLLR provided WER gains of
2.7% and 2.2% absolute for supervised and unsupervised adaptation
respectively. The loss from using unsupervised transcripts was only
0.5%. Rtree MLLR gave WER gains of 5.7% and 4.4% for super-
vised and unsupervised adaptation. The larger gains here indicate
that 60min of data was sufficient to estimate up to 256 separate lin-
ear transformations, even using an automatic transcript, however the
gap between supervised and unsupervised adaptation of 1.3% was
larger than Global MLLR because of the increased complexity of
the transformation and therefore sensitivity to transcript errors. Us-
ing MAP alone gave a 5.9% WER gain for supervised adaptation,
which was greater still than Rtree MLLR. However, gains for un-
supervised MAP were considerably less. MAP adaptation is more
sensitive to errors than MLLR due to the lack of mixture pooling.

By cascading transformations of increasing complexity, each
stage was able to progressively improve the frame alignments for

Adaptation technique Supervised Unsupervised
Baseline 35.1 35.1

Global MLLR 32.4 32.9
Rtree MLLR 29.4 30.7
MAP 29.2 32.3

Global+Rtree MLLR 28.9 30.3
Global+Rtree MLLR+MAP 26.0 29.1

Table 1. Acoustic model adaptation using 60min of adaptation data per
speaker (% WER). Unsupervised adaptation used automatic transcripts with
36.0% WER.

the subsequent stage. As shown, a cascaded Global + Rtree MLLR
system resulted in an 0.5%/0.4% gain for supervised/unsupervised
adaptation respectively over Rtree MLLR alone. Cascading Global
+ Rtree MLLR + MAP lead to an additional gain of 3.2% and 3.2%
compared to MAP alone. Overall, total WER gains of 9.1% and
6.0% absolute (26% and 17% relative) were achieved for the su-
pervised and unsupervised adaptation respectively. Unsupervised
adaptation was successful in that it retained 66% of the gain of
supervised adaptation, using transcripts with a WER of 36.0%.

These results were compared to those achieved without knowl-
edge of the speaker identity. It was found that utilising 210 hours
of additional SWB1 data to adapt the baseline models resulted in a
31.6% WER - a 3.5% absolute gain. This gain is likely a result of
more data rather than domain or channel mismatch. Most impor-
tantly, this gain was well short of the 9.1% gain from SD adaptation.

Table 2 shows the effect of the amount of adaptation data on
the gains, using 10min, 30min or 60min of data per speaker. As
expected, the more complex adaptation techniques accommodated
more data before gains saturated. Importantly, gains did not appear
to be saturated at 60min for either the supervised or unsupervised
instances of Global+Rtree MLLR+MAP, thus indicating that further
gains would be observed with even more data. This is beneficial for
telephone call transcription since it is conceivable that most users
would easily create hundreds of hours of call data, all of which could
be used for acoustic model adaptation or training.

3.1. Data selection using confidence measures

In order to address the 3.1% absolute WER gap between supervised
and unsupervised adaptation, the use of confidence thresholded tran-
scripts was investigated. This was shown to be beneficial in [15].
To preserve as much adaptation data as possible, thresholding was
performed on a per-word basis, rather than a per-utterance basis, as
is commonly done.

First, each unsupervised transcript was confidence scored using
the posterior probability from the recognition lattice. Occurrences
of words with confidence scores above/below ρ were then marked
as certain/uncertain. Each HMM (including its tied states) was then
cloned to give an uncertain equivalent. The recognition lexicon was
also cloned by inserting an uncertain version of each word with pro-
nunciations mapped to corresponding uncertain phones. Adaptation
was then performed using the confidence-marked transcript. By in-
troducing uncertain HMMs, frames for low confidence words were
excluded from adaptation parameter estimation. The uncertain mod-
els were discarded after adaptation.

Adaptation results shown in Table 2. For MLLR, thresholding
was not useful, which can be explained by the error robustness pro-
vided by mixture clustering. However, there was a small gain of
0.3% absolute for MAP adaptation using a threshold of ρ = 0.5. Er-
ror rates at ρ = 0.8 were worse than ρ = 0.5 because of a reduction
in effective adaptation data - at ρ = 0.5, 75% of frames were kept
after thresholding, while only 50% were kept for ρ = 0.8.
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Supervised Unsupervised Conf. Thresh

10min 30min 60min 10min 30min 60min 60min
ρ = 0.5 ρ = 0.8

Baseline 35.1 35.1 -
Global MLLR 32.7 32.4 32.4 33.1 32.9 32.9 -

Global + Rtree MLLR 30.8 29.5 28.9 31.8 30.8 30.3 30.2 30.3
Global + Rtree MLLR + MAP 29.9 27.6 26.0 31.7 29.9 29.1 28.8 29.2

Table 2. Supervised, unsupervised and confidence thresholded acoustic model adaptation using various amounts of adaptation data per speaker (%WER). The
threshold for confidence thresholding is given by ρ.

4. LANGUAGE MODEL ADAPTATION

Compared to acoustic model adaptation, the potential of LM adapta-
tion for SD recognition is less well understood. Of previous studies
[6, 7, 8, 12, 13], often the effect of adapting to the speaker’s idi-
olect cannot be easily separated from that of adapting to the topic of
the discussion, or the speaker’s usual topic of discussion. One ap-
proach to deal with this ambiguity is to ignore it and deal with the
effects jointly, which has the downside of limiting the applicability
of the results to different corpora, as the amount of mutual infor-
mation between speaker identity and topic will likely depend on the
corpus, speakers and topics in question. Alternatively, the SWB1
corpus in particular is useful for examining the effect of adaptation
to a speaker’s idiolect alone (as used in [9]), the results of which are
presented here.

The SWB1 corpus consists of calls between two previously un-
acquainted parties, each prompted prior to recording to discuss a
pre-determined topic. This reduces the correlation between speak-
ers and topics, as the topics are disjoint and chosen somewhat ran-
domly. In the experiments reported here, for each speaker, there was
no topic overlap between any two conversations, both in evaluation
and adaptation data. This allowed any gains from LM adaptation to
be attributed confidently to the learning of idiolect only.

LM adaptation was performed using the common approach of
linear interpolation [8, 13, 16]. Various combinations of data sources
were used to generate the LMs in experiments. The background LM
was trained on the entirety of the Fisher corpus. The remainder of
data was sampled from the SWB1 corpus in the form of two sepa-
rate sections of 62 hrs and 210 hrs from various speakers (exclud-
ing speakers in the evaluation and development sets), as well as 60
min of adaptation data from each of the test speakers. Interpolation
weights were optimised on a separate development set of 31 differ-
ent development speakers. Both WER and perplexity (PPL) results
are presented.

Table 3 shows that unsupervised LM adaptation using transcripts
with 36.0% WER was not useful. The rest of this section thus fo-
cuses on trying to understand the failings of SD LM adaptation by
examining the supervised results. Table 3 shows that interpolation of
the SD models with the background LM resulted in a notable WER
gain of 0.4% absolute and a perplexity gain of 6.4, over using just
the the background LM. However, interpolating the background LM
with an LM trained on 62 hrs of unrelated non-SD data lead to a
larger WER gain of 0.7%. Unfortunately, no further gains were ob-
served when this resulting LM was then interpolated with a SD LM.
Even worse was that using additional non-speaker related data con-
tinued to improve the WER (0.7%, 1.0%, 1.1% using 62, 210 and
272 hours respectively), and still no gains were observed from fur-
ther interpolating with the SD LM’s. Sanity experiments such as
using only 1/2-gram SD models were performed to verify that the
lack of gain was not due to under-training. Also out-of-vocabulary
(OOV) rates dropped from 0.6% to 0.5% in the best case, thus ex-
cluding any gains being related to new vocabulary learning.

Overall, the results indicated that interpolating with large

Adaptation data Supervised Unsupervised
Fisher 62h 210h SD WER PPL WER PPL
X 35.1 97.0 35.1 97.0
X X 34.7 90.6 35.1 94.9
X X 34.4 89.3 35.0 94.5
X X X 34.4 87.9 35.0 93.7
X X 34.1 86.5 35.0 93.1
X X X 34.0 85.1 35.0 92.5
X X X X 34.0 84.0 35.0 91.9

Table 3. Language model adaptation using combinations of Fisher and
Switchboard (SWB1) data. Speaker-dependent (SD) adaptation used a 3-
gram model trained on 60min of adaptation data/speaker.

amounts of non-SD data was better than using a small amount
(60 min) of tightly related speaker dependent data. Note that folding
in the SD LM always improved the perplexity, and examining the
resulting LMs did reveal that SD information was being learned,
such as the unigrams related to a speaker’s city of residence, or
commonly used disfluency n-grams. Nevertheless, the trusted axiom
of “more data” seemed to outweigh any SD benefits. Of course,
another fair explanation is that 60 min of speech is insufficient to
capture idiolect. Thus, text expansion techniques were investigated
to increase the quantity of adaptation data per speaker.

4.1. TFIDF-based text expansion

The TFIDF (term frequency inverse document frequency) is a popu-
lar means for text expansion measure for LM adaptation [8, 16]. It
is commonly used to measure document similarity, and is computed
using the cosine similarity between word count vectors of documents
weighted by word importance. For LM adaptation, TFIDF is used to
augment adaptation data with similar documents from a background
corpus. In previous studies that did not isolate topic and idiolectic
effects, this approach has been moderately successful. The experi-
ments reported here aim to validate whether such gains are indeed
from learning idiolect, or just a by-product of topic learning.

To ensure consistency with learning idiolect, a number of impor-
tant modifications were made. Since the goal was to adapt n-grams,
this necessarily assumes that idiolect is embodied in n-gram statis-
tics. Therefore, document vectors for TFIDF were computed using
n-gram counts, rather than single-word counts. Secondly, it was as-
sumed that idiolectical patterns would occur on an utterance-level -
entire conversations in the background data would not necessarily be
representative of another speaker’s idiolect. Therefore similarity was
computed on a per-utterance rather than per-document basis, with a
sliding window over adjacent utterances for smoothing.

Unfortunately, even with these modifications, there were no ob-
servable gains from using TFIDF expansion, as shown in Table 4.
This lack of gain is best explained by the lack of topic overlap be-
tween adaptation and evaluation data, which was by experiment de-
sign. Since TFIDF is typically used as a topical similarity measure,
it is not unreasonable that no gains are observed when topic overlap
was removed.
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Hours selected Index order Pool width WER PPL
3 1, 2, 3 1 34.0% 84.1
3 1, 2, 3 3 34.0% 84.3
20 1, 2, 3 3 34.1% 84.7
3 1, 2 3 34.0% 84.3
3 1 3 34.0% 84.6
3 1, 2 5 34.0% 84.4

Table 4. Supervised language model adaptation using TFIDF. “Hours se-
lected” is the total number of hours selected using TFIDF similarity to grow
adaptation data; “Index order” is the n-gram order of the elements of the vec-
tors used in TFIDF scoring; “Pool width” is the number of adjacent utterances
used to in the sliding window for smoothing TFIDF statistics.

LM Self Other Δ n-grams
PPL PPL 1-gram 2-gram 3-gram

SD 97.1 107.1 - - -
Fisher+SD 90.6 93.7 30 650 38
Fisher+62 - - 1.4k 39.6k 5.2k

Table 5. Average PPL using speaker’s LM, best PPL of other speaker’s LM,
and increase in 1/2/3-gram counts for various interpolation approaches.

4.2. Discussion

Overall, the LM adaptation experiments demonstrate that idiolect
learning via LM adaptation does not significantly affect WER. It
seems though that topical overlap is critical since prior work in LM
adaptation has been successful. It can be concluded then that for
tasks with large amounts of speaker data, it is not necessary to craft
a speaker-dependent LM. Possibly it may be sufficient to use an en-
semble of well-trained topic-dependent LMs.

Although SD LM adaptation did not improve the WER, there
were always gains in perplexity, as shown in Table 3. To investigate
whether this change was meaningful, PPL was evaluated for each
of the 31 speakers’ evaluation data using each of the 31 SD LM’s.
Care was taken to maintain a fixed vocabulary so that PPLs were
comparable. In all cases, as shown in Table 5, the speaker’s own LM
achieved the lowest perplexity on the speaker’s own evaluation data,
demonstrating that some degree of idiolect was indeed being learnt.

The change in n-gram counts gives further insight into how id-
iolect was being learnt. LM adaptation can affect n-gram probabil-
ities by either adjusting an existing n-gram probability (adjustment)
or promoting a lower order n-gram to a higher order (promotion).
The gain in probability is generally more from promotion, since
back-off weights significantly penalise low order n-grams. Table 5
shows the number of new (or promoted) n-grams for various inter-
polation approaches. Clearly, SD adaptation directly from the back-
ground model introduced far fewer new n-grams than adapting to 62
hrs of speaker-independent data. This should be noted alongside the
larger gains in WER and PPL for speaker-independent adaptation (a
gain in WER of 0.7% compared to 0.4%). If promotion is assumed
to give larger probabilities than adjustment, then it is clear why the
SD models do not improve WER; SD interpolation is mostly an ad-
justment adaptation, that will indeed manifest PPL improvements
but not necessarily WER improvements.

5. CONCLUSIONS

By applying well established techniques in acoustic and LM adapta-
tion to the domain of speaker adaptation for conversational telephone
speech, some promising findings have been demonstrated which will
prove useful for improved recognition of telephone calls on smart
devices. Using one hour of automatically transcribed speech per
speaker at an error rate of 36.0%, unsupervised acoustic model adap-

tation reduced the word error rate from 35.1% to 28.8%, an 18% rel-
ative gain, equivalent to 70% of the gain from supervised adaptation,
with strong indications that the accuracy could be improved further
still with additional data. LM adaptation experiments indicated that
although there seems to be a small degree of speaker idiolect, adap-
tation to the speaker alone, without considering the topic of the con-
versation, is in itself unlikely to improve transcription accuracy.

As more extensive data becomes available, interesting questions
may be raised concerning the boundaries between idiolect, topic
and domain, and how incomplete knowledge of such things can be
utilised in an unsupervised way to drive word error rates downward
in the long-term.
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