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ABSTRACT

An unsupervised cross-validation adaptation algorithm and its vari-
ation are proposed that introduce the idea of cross-validation in
the unsupervised batch-mode adaptation framework to improve the
adaptation performance. The first algorithm is constructed on a
general adaptation technique such as MLLR and can be used in
combination with any adaptation method. The second algorithm is a
modified version of the first algorithm and works with lower compu-
tational cost by assuming MLLR. These algorithms are extensions
of our previously proposed CV training methods and are useful
to suppress the negative effect of the conventional unsupervised
batch-mode adaptation process that reinforces the errors included in
automatic transcriptions. The proposed algorithms were evaluated in
domain adaptation, speaker adaptation, and in their combination for
large vocabulary spontaneous speech recognition. When the domain
and speaker adaptations were combined using a read speech initial
model, the relative word error rate reduction by the proposed method
was 29% whereas the reduction by the conventional approach was
23%.

Index Terms— Unsupervised adaptation, cross-validation,
MLLR, MAP, computational cost

1. INTRODUCTION

Unsupervised adaptation is a useful technique to achieve high recog-
nition performance without requiring a reference for adaptation.
Usually, unsupervised adaptation is performed by first running a
speech recognizer for input utterances to obtain a recognition hy-
pothesis and then applying a supervised adaptation technique such
as MLLR [1] to update the model parameters using the recognition
hypothesis as a transcript. This strategy is used both for on-line
adaptation and for off-line adaptation. For the off-line adaptation, a
common strategy is the batch-mode adaptation where a set of input
utterances are decoded and then a model is updated using all the hy-
potheses. The process is iterated several times for higher recognition
performance [2].

While the batch-mode strategy is effective, a problem is that the
hypothesis includes errors and the model parameters are adjusted
using not only the correct labels but also the errors. When the adap-
tation is iterated, the errors are reinforced during the iteration since
the decoding step and the update step are repeated using the same
data. Even for correct labels, the over fitting problems are unavoid-
able since a bias in the parameter estimation is intensified during the
iteration. Because of these, the adaptation performance is limited.

To address these problems, we propose two unsupervised cross-
validation (CV) adaptation schemes that introduce the idea of CV
into the iterative unsupervised adaptation framework to efficiently
avoid the data overlap between the decoding step and the model up-
date step. The first version is constructed on a general adaptation
technique and has an advantage that it is independent from the details

of the underlying adaptation method and can be used in combination
with any adaptation method. The second algorithm is a variation of
the first algorithm that is specially designed for the MLLR method
and has an advantage that it can largely reduce the computational
cost. In this paper, the first algorithm is referred to as a general ver-
sion and the second as an efficient version.

The proposed adaptation algorithms are similar to the CV based
gradient estimation method for MMI training [3] and to our previ-
ously proposed CV-EM supervised training method [4] in that CV is
introduced in the iterative model estimation framework. The differ-
ences are that the proposed algorithms are unsupervised adaptation
schemes and the CV technique is used to compute hypotheses rather
than the gradients as in the MMI method or the sufficient statistics
for true transcripts as in CV-EM.

In experiments, the proposed CV methods are applied to speaker
adaptations for large vocabulary spontaneous speech recognition. In
addition, they are also evaluated in the context of unsupervised do-
main adaptation in which a speaker independent spontaneous speech
model is made from a read speech model using spontaneous utter-
ances from multiple speakers as the domain adaptation data.

The organization of this paper is as follows. The general version
of the unsupervised CV adaptation scheme is proposed in Section 2.
The efficient version for the CV MLLR adaptation is described in
Section 3. Experimental conditions are described in Section 4 and
the results are shown in Section 5. Conclusions and future works are
given in Section 6.

2. UNSUPERVISED CROSS-VALIDATION (CV)
ADAPTATION ALGORITHM

Figure 1 shows the procedure of the proposed K-fold unsupervised
cross-validation (CV) adaptation method. In the CV adaptation, the
input speech data is first randomly partitioned intoK exclusive sub-
sets so that each subset has roughly the same size. As in the conven-
tional batch-mode adaptation, CV adaptation repeats the decoding
step and the model update step. The first decoding step is basically
the same as the batch-mode adaptation and the K subsets are pro-
cessed using the same initial model. Then, given the recognition hy-
potheses,K CVmodels are made by excluding a transcript from one
subset instead of making a single model using an adaptation method
such as MLLR and MAP [5]. As an initial model to estimate the k-th
CV model, the k-th CV model of the previous epoch is used. Each
CV model is used in the next decoding step to make a new hypothe-
sis for the data subset whose hypothesis has been excluded from the
parameter estimation of that model.

After several iterations, a final recognition hypothesis is ob-
tained by gathering the hypotheses of the K subsets made in the
last decoding step. With this procedure, the data used for the
decoding and for the model parameter estimation are effectively
separated minimizing the undesired effects of reinforcing the errors
and bias. The fragmentation problem is minimal for large K since
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Fig. 1. Unsupervised cross-validation (CV) adaptation. M is a
model, D(k) is the k-th Data subset, T is a transcript, D̄k is a data
subset excluding D(k).

(K − 1) /K of the data is used for the parameter estimation of each
CV model. The computational cost of the decoding step is mostly
constant forK but the cost for the update step is linear inK.

CV-adaptation is somewhat similar to cross-adaptation [6] when
K = 2. The difference is that while cross-adaptation uses transcripts
from different models representing different views of the same data,
CV-adaptation uses the different data of the same view. That is,
CV-adaptation is performed on a single recognition system whereas
cross-adaptation requires two.

3. A VARIATION FOR EFFICIENT MLLR ADAPTATION

While the general version of the CV adaptation method is indepen-
dent from the underlying adaptation method, the efficient algorithm
is based on utilizing the details of the MLLR algorithm. In this sec-
tion, we first overview the MLLR algorithm for mean transforma-
tion [1] and then propose an efficient version of unsupervised CV
MLLR adaptation.

3.1. MLLR algorithm

In the MLLR adaptation, mean vectors of a set of Gaussian mixture
HMMs are classified into M classes and a transformation shown in
Equation (1) is estimated for each class so as to maximize the like-
lihood by the adapted HMM, where m is a class index, mr is a
Gaussian component index belonging to m-th class,Wm is a trans-
formation matrix, ξmr = [1, μT

mr
]T is an extended mean vector

consisting of a constant term and an original mean vector μmr , and
μ′mr

is a transformed mean vector.

μ′mr
= Wmξmr . (1)

Given a set of adaptation utterances, the optimal transformationWm

is obtained by solving Equation (2).
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where Σmr is a covariance matrix of the mr-th Gaussian compo-
nent of the original model, o (t) is an observation vector at time t,
and γmr (t) = P (qmr (t) |λ, O) is an occupation count of being
at Gaussian mixture component qmr at time t given HMM model
parameters λ and the observation sequence O.

The transformation estimation using Equation (2) can be divided
into two steps. The first step is an accumulation step expressed in
Equation (3) and the second step is a transformation estimation step
that solves Equation (4).
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While the accumulation step requires summation over observation
sequences and the computational cost is linear in the amount of data,
the cost for transformation estimation step is constant. Therefore,
for a large amount of data, the computational cost is dominated by
the accumulation step.

3.2. Efficient unsupervised CV MLLR adaptation

Figure 2 shows the procedure of the proposed efficient unsupervised
CV adaptation algorithm for MLLR. The differences from the gen-
eral CV algorithm are that the MLLR model update procedure is
split into two steps and the data exchange for the CV operation is
performed between the two steps. That is, the MLLR statistics de-
fined by Equation (3) are accumulated in the accumulation step for
each CV subset using the recognition hypothesis of that subset and
a corresponding CV model. Then, MLLR transforms for the k-th
CV model are estimated in the estimation step described by Equa-
tion (4) by gathering all the statistics excluding the one for the k-th
subset. The new k-th CV model is made by applying the estimated
transforms to the k-th CV model of the previous epoch.

In this procedure, the computational cost for the MLLR accu-
mulation step is constant for the number of CV folds K excepting
the overhead of reading multiple models since each input utterance is
processed only once while it is processedK−1 times using different
CV models in the general unsupervised CV algorithm. Therefore,
when the computational cost of MLLR is dominated by the accumu-
lation step, the model update step of this efficient version works with
only 1/ (K − 1) of the original cost.

4. EXPERIMENTAL SETUPS

Test set was the evaluation set of the Corpus of Spontaneous
Japanese (CSJ) [7] that consisted of 10 academic presentations
given by different male speakers. The length of each presenta-
tion is about 10 to 20 minutes and the total duration is 2.3 hours.
The unsupervised speaker adaptations were performed for each of
these presentations. Two types of initial models were used for the
speaker adaptation experiments. One was an in-domain model that
was trained using spontaneous speech from the CSJ corpus and the
other was a cross-domain model that was trained using read speech
from the Japanese News Article Sentences (JNAS) corpus [8]. Both
of them were tied-state Gaussian mixture triphone HMM with 32
mixtures. The CSJ model had 3000 states and trained using 254
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Fig. 2. Efficient unsupervised cross-validation (CV) adaptation for
MLLR.M is a model,D(k) is the k-th Data subset, T is a transcript,
SS(k) is a set of MLLR sufficient statistics.

hours of academic oral presentations whereas the JNAS model had
2000 states and trained from 52 hours of gender independent data.
In addition to directly use these initial models for the unsupervised
speaker adaptation, a combination of unsupervised domain and
speaker adaptations was also evaluated in which the JNAS model
was first adapted in an unsupervised manner using two hours of
CSJ training data from 24 speakers and then unsupervised speaker
adaptation was performed. The MLLR method was used for the
speaker adaptation and the MAP method was used for the domain
adaptation.

Feature vectors had 39 elements comprising 12 MFCCs and
log energy, their delta, and delta delta values. The proposed effi-
cient CV MLLR algorithm was implemented by extending the HTK
toolkit [9]. In our current implementation, a common set of trans-
formation classes were used over the CV models. This behavior
is different from the general version of the CV adaptation where
each CV model has its own transformation classes. The MLLR
adaptation was performed using a regression class tree with 32 leaf
nodes. The language model was a trigram model trained from 6.8M
words of academic and extemporaneous presentations from CSJ
and the dictionary size was 30k. The recognizer was the T3 WFST
decoder [10].

5. EXPERIMENTAL RESULTS

Figure 3 shows the unsupervised speaker adaptation results by the
general CV adaptation method with the different number of CV folds
K. The CSJ model was used as the initial model. The CV-adaptation
gave lower word error rates than the batch-mode baseline adaptation
with all the CV foldsK. The best results were obtained whenK was
greater than around 10 to 20. This is because when K is small, the
effective adaptation data is reduced for the model parameter estima-
tion. As the value of K increases, stable results are obtained since
(K − 1) /K of the data is used in the model parameter estimation.
WhenK was equal or greater than four, the improvement by the CV
adaptation from the baseline batch adaptation was statistically sig-
nificant for all the iterations 1 to 8, respectively. In the following
experiments, K = 20 was used.
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Fig. 3. Number of cross-validation folds (K) and recognition perfor-
mance. The CV adaptation is by the general version of CV MLLR
adaptation with the CSJ initial model. The zero-th iteration is the
result of the speaker independent model. The batch-mode baseline
adaptation result is denoted as Base.

Table 1 shows the results of unsupervised speaker adaptation
using the CSJ and JNAS initial models and Table 2 summarizes their
computational costs. When the CSJ model was used as an initial
model, both the general and efficient version of the unsupervised
CV MLLR adaptation gave mostly the same word error rates that
were significantly lower than the baseline batch-mode adaptation.
The computational cost consumed for the MLLR model update step
in the efficient version of the CV method was about 1/3 of that of
the general CV method while their decoding cost was mostly the
same. As the total, the computational cost of the efficient version of
the CV method was only about 60% of that of the general version.
The relative word error rate reductions by the baseline, general CV,
and efficient CV adaptation methods after eight iterations were 12%,
17%, and 16%, respectively.

When the JNAS initial model was used, the initial word error
rate was much higher than when the CSJ model was used. This was
because of the mismatch in the training and test domain. Both the
general and efficient version of the CV algorithms gave significantly
better performance than the batch-mode baseline. When the general
and efficient version of the CV algorithms are compared, the general
version gave slightly better performance than the efficient version
for the number of iterations larger than two. This was probably be-
cause the approximation introduced in the efficient version of the
CV algorithm to compute the sufficient statistics and the different
treatment of the transformation classes in the current implementa-
tion. The relative word error rate reductions by the baseline, general
CV, and efficient CV adaptation methods after eight iterations were
18%, 26%, and 25%, respectively.

The unsupervised domain adaptation was performed by the con-
ventional batch-mode MAP adaptation and the general version of
the CV adaptation with the MAP method. The word error rates by
the batch-mode and CV domain adaptations after five iterations were
31.2% and 30.4%, respectively. Table 3 shows the word error rates
when the domain adapted speaker independent models were used as
an initial model for the unsupervised speaker adaptations. The zero-
th iteration is the results by the domain adapted speaker independent
models. Both general and efficient CV methods significantly out-
performed the baseline. The general CV method gave slightly better
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Table 1. Word error rates of the CSJ test set. In the table, “CSJ”
and “JNAS” indicate the CSJ and JNAS initial models, respectively.
“Base” is the baseline conventional batch mode MLLR adaptation,
“CV” is the general CV MLLR adaptation, and “ECV” is the effi-
cient CV MLLR adaptation. The zero-th iteration is the result by the
speaker independent initial model

Condition # of iterations
Init Adpt 0 1 2 3 5 8

Base 22.5 20.3 20.1 19.9 19.9 19.9
CSJ CV 22.5 19.7 19.4 19.2 19.1 18.8

ECV 22.5 19.7 19.3 19.2 19.1 19.0
Base 34.7 30.0 29.3 29.0 28.7 28.5

JNAS CV 34.7 28.5 27.1 26.4 26.1 25.6
ECV 34.7 28.5 27.1 26.8 26.4 26.2

Table 2. Averaged computational costs of the decoding and model
update steps in each adaptation epoch to process the CSJ test set.
The cost is measured in hours

Init Step Base CV ECV
CSJ Decode 3.9 4.6 4.8

Update 0.4 7.8 2.6
Total 4.4 12.4 7.4

JNAS Decode 3.9 4.5 4.9
Update 0.4 7.1 1.9
Total 4.3 11.6 6.8

performance than the efficient version when the number of iterations
was large. When the CV-MAP adapted initial model was used, the
relative word error rate reductions by the unsupervised speaker adap-
tations using the batch-mode, general CV, and efficient CV methods
were 13%, 19%, 18%, respectivelly. The relative word error rate re-
duction from the result of the domain independent JNAS model was
23% when the batch-mode domain and batch-mode speaker adapta-
tions were combined, whereas the reductions by the combinations of
CV domain and CV speaker adaptations were 29% and 28%, respec-
tivelly, when the general and efficient versions of the CV speaker
adaptations were used.

6. CONCLUSION

An unsupervised CV adaptation algorithm and its variation have
been proposed that can be used as a substitute of the conventional
batch-mode adaptation framework. The first algorithm is referred
to as a general version and it can be used in combination with any
adaptation method. The second algorithm is referred to as an effi-
cient version and it works with lower computational cost than the
general version by assuming MLLR. These CV algorithms have an
ability to suppress the negative effect of the batch-mode process that
reinforces the errors included in automatic transcription. Experimen-
tal results showed that the general version of the CV methods gives
the highest recognition performance whereas the efficient version is
advantageous for quick adaptation with reduced computational cost
especially when the adaptation is iterated only once or twice.

Future work includes improving the performance of the efficient
CV algorithm for the larger adaptation iterations and implementing

Table 3. Word error rates of the CSJ test set using the domain
adapted model as an initial model. “Base” is the baseline conven-
tional batch mode adaptation, “CV” is the general CV adaptation,
and “ECV” is the efficient CV adaptation. The domain adaptation
was performed by MAP and the speaker adaptation was performed
by MLLR. The zero-th iteration is the results by the domain adapted
initial models

Adaptation # of iterations
Domain Spkr 0 1 2 3 5 8
Base Base 31.2 27.6 27.1 27.0 26.8 26.7
CV Base 30.4 27.1 26.6 26.5 26.3 26.3
CV CV 30.4 26.1 25.4 25.3 24.9 24.7
CV ECV 30.4 26.2 25.3 25.3 25.2 24.9

efficient version of the CV MAP adaptation. Combinations with
other acoustic model adaptation techniques and applications to other
adaptation problems not limited to speech recognition are also inter-
esting.
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