
LANGUAGE IDENTIFICATION OF INDIVIDUAL WORDS IN A MULTILINGUAL
AUTOMATIC SPEECH RECOGNITION SYSTEM

Andrea Haţegan1, Bogdan Bârligă2, Ioan Tăbuş1

1 Tampere University of Technology, FINLAND; 2 Nokia Devices, Tampere, FINLAND

ABSTRACT

This paper presents a new algorithm for identifying the lan-

guage of words in a multilingual automatic speech recogni-

tion system. The new algorithm uses as input written words

and it is composed of a method for language modelling and

a method to select the language of a given word based on the

available models. We also present two selection rules for the

model’s parameters. One of the rules uses a free parameter

that controls the accuracy of the resulted model, as well as its

size. On average, the classification accuracy of the new algo-

rithm is above 70% for the first best and above 80% for the

first two best.

Index Terms— Pattern classification, data compression

1. INTRODUCTION

The problem of language identification of words gained more

focus with the rapid increase in deployment of multilingual

automatic speech recognition (ASR) systems on mobile de-

vices. Automatic language identification (LID) allows multi-

lingual ASR systems to offer open vocabulary speech recog-

nition, a must-have feature of modern ASR systems. Allow-

ing the user to increase the vocabulary of the ASR system en-

ables basic use-cases like speaker independent name dialing

or voice commanding.

For this purpose the system needs to be able to construct

the acoustic representation of the words in the vocabulary. In

a typical architecture of multilingual ASR systems (like the

one described in [1]) this is done in two stages: first the dic-

tionary entry is translated from text to a phonetic representa-

tion and next the acoustic model used in recognition is built

from the obtained phoneme sequence.

The LID algorithm is needed in the first step as the rules

for text to phoneme translation are language dependent. Iden-

tifying the wrong language leads to using a wrong set of text-

to-phoneme translation rules, resulting in an acoustic model

that will not resemble the actual utterance and thus altering

This work was supported by the Academy of Finland (application num-

ber 213462, Finnish Programme for Centers of Excellence in Research 2006-

2011) and the Graduate school in Electronics, Telecommunication and Au-

tomation (GETA). Data were provided by Nokia Devices, Tampere, FIN-

LAND.

the recognition accuracy. In addition to the identification ac-

curacy, as part of a multilingual system, a language identi-

fication algorithm has to deliver also on other aspects, like

configuration flexibility and tight resource requirements.

The paper is organized as follows: in the next section we

present the main approaches to the problem of language iden-

tification and point out their advantages and drawbacks; the

third section presents the new algorithm; the fourth section

presents the experimental results and in the last section some

conclusions are drawn.

2. PREVIOUS WORK

Early methods for language identification were developed to

identify the language of entire documents using n-grams and

statistics of short words [2], [3], [4]. Discriminative n-grams

are used in [5], where each word is decomposed into a plural-

ity of non-overlapping n-grams that are subsequently checked

for matching against regular expression like n-gram patterns

learned from the language. The method also defines a voting

scheme that combines the word-level decision in order to ob-

tain a document-level decision. The learned n-gram patterns

are constructed for each language with respect to the other

competing languages such that they distinguish whether the

given word belongs to the language, or not.

In [6] decision-trees are compared to an enhanced n-gram

method, and in [7] the comparison includes also a neural net-

work approach. In addition to the identification accuracy, the

comparison refers also to the resource requirements (mem-

ory consumption) of the three methods. The results showed

that the neural networks outperform the n-gram and the deci-

sion tree based methods, both in identification accuracy and

in terms of memory requirements. An enhanced neural net-

work based language identification method is introduced in

[8], where the proposed neural network design allows for sig-

nificant reductions in memory consumption with virtually no

impact on the identification performance.

Despite the above mentioned advantages, the neural net-

work based language identification in [8] has a practical draw-

back: there is one model for each configuration of supported

languages. This means that a new model has to be built for

each configuration, and that new language support cannot be

added to the system in a flexible manner. Also in the case

4357978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

of removing the support of one or several languages from the

configuration, the size of the model would not decrease ac-

cordingly. It can be stated that the discriminative abilities of

the neural network come at the price of flexibility.

This flexibility price becomes important when the LID al-

gorithm is part of a multilingual system that is deployed in

a wide variety of configurations for the supported languages.

This is the case for example of deploying ASR technology in

mobile phones that ship to numerous locations and with many

configurations.

We propose a new algorithm for language identification

of individual words that has its root in the data compression

field. The new algorithm dubbed lidComp, constructs a model

for each language and then a given word is classified based on

the average codelength resulted when it is encoded using the

different models available. The identified language is the one

who’s model yields the shortest average codelength for the

given word. We present two methods for selecting the param-

eters of each language model. The parameters are adjusted

independently of the other languages available and one of the

methods has a free parameter that can be used to adjust the

model size and its accuracy. We tested the new algorithm for

identifying the language of names as well as regular words,

in a configuration of six European languages. On average,

the classification accuracy is above 70% for the first best and

above 80% for the first two best.

3. LIDCOMP - THE NEW ALGORITHM

3.1. Problem statement

The problem of language identification of individual words

can be formalized as follows: given a word W = w1 . . . wn

and a set of models Mi for each language, choose the lan-

guage i∗ for the given word, the one that minimizes the aver-

age codelength L(W ;Mi) when encoding it with Mi∗ , i.e.:

i∗ = arg min
i

L(W ;Mi). (1)

The language identification problem formalized like in (1) is

in line with the minimum description length (MDL) principle

[9]: select the hypothesis that minimize the number of bits

needed to write the observed sequence. However, the accu-

racy of the proposed language selection rule depends on the

descriptive power of the models used to represent each lan-

guage. Once the models are set, the average codelength of a

given word can be obtained using the arithmetic coding [10].

The models used by lidComp are tree machines (TM) in-

troduced for data compression purposes in [11],[12] and fur-

ther developed in [13]. In a data compression framework like

in [11] and [12], a TM is adaptively built as the given data is

encoded. The final TM is not used anymore after the encod-

ing process is done. In [13] a TM is built from a training set

and then it is used to encode small sequences, e.g. SMS, that

have the same statistical properties like the training data, but

no decision making is done.

In [11],[12], it has been shown that TM are optimal in

the sense that they are able to compress long strings with a

near optimum per symbol length without prior knowledge of

the source generating the data. This means that after seeing

enough data, the TM model incorporates the rules of the ma-

chinery that generated the data. Such property makes TMs

strong candidates for language modelling and classification

tasks. In the next subsection we describe the encoding pro-

cess of a word using a TM and how the TM is built from a

training set.

3.2. Coding and modelling

In a TM one node represents one context and each node/context

keeps the probability distribution of the symbols in the alpha-

bet seen in that context. Thus, the average codelength in (1)

of a word W given a TM Mi is computed as follows:

L(W ;Mi) = −
n∑

j=1

log2 P (wj |c(wj);Mi), (2)

where c(wj) denotes the context for the current symbol wj .

The context for the symbol wj is found by climbing the tree

starting from root and then following the branch wj−1, at the

arrived node following the branch wj−2, and so on, until a leaf

or the first symbol w1 of the word is reached. It is possible

to stop also in an internal node in the tree, if wj−k is not a

branch of the node wj−1 . . . wj−k+1.

A TM is obtained by pruning a maximal tree machine

(MTM) that is collected on the training set. The pruning pro-

cess is needed because the resulted MTM is usually over fitted

to the training set and our goal is to find a model that general-

izes for data that were not used for training. Next, we present

the MTM building process and how a TM is obtained from

it for one language. The process is repeated for each given

language.

The MTM is built from a large collection of words in two

steps: context assignment and symbol occurrence collection.

Figure 1 illustrates the process of context assignment: first,

each word is padded with the start/stop symbol and then for

each symbol in all words we keep its prefix; the prefixes are

sorted in lexicographical order with priority on the right; fi-

nally, the contexts that form the MTM are obtained by re-

taining from each prefix the rightmost symbols such that the

context becomes deterministic, i.e. in each context only one

symbol is seen. One context might not be deterministic if the

entire prefix has to be taken as the context, e.g. ”�x”. Once the

contexts are available, the MTM is obtained as follows: start

with the empty tree, i.e. the root and all the symbol counts

equal to zero. For each pair (context, symbol) add the context

to the tree by incrementing the count of the symbol in all the

nodes on the path from the root to the context. The resulted

4358

MTM contains all the contextual information available in the

training data.

If the resulted MTM would be used to encode words that

are not in the training data, the zero-frequency problem will

occur, i.e. it is possible that in some nodes the probability

of several symbols to be zero. We tackle this problem by

introducing the escape probability like in [13] and in this way

we assign a probability different than zero to each symbol in

the alphabet, at all nodes.

By the context selection rule we select the deepest node

in the tree for each symbol that has to be encoded. Although

the longer contexts (deep nodes) contain more relevant statis-

tics than the shorter ones, the information they provide is less

reliable, because usually there is a limited amount of train-

ing data and the statistics accumulate slower. Thus, we would

like to avoid long contexts that are not reliable and fitted to the

training set by pruning the MTM. The resulted pruned tree is

the language model in the form of a TM.

We experimented with two pruning strategies: mdlPrune
and freePrune. The first one starts in the root and splits nodes

until a given condition is true, while the other pruning strategy

starts at the leaves and prunes nodes until another condition

is true. The second pruning rule uses a free parameter that

controls how much the MTM is pruned.

Denote by nj|s the frequency of the jth symbol in the

alphabet at node s and by P̂j|s its probability that was ad-

justed to include also the escape probability. Also, denote by

ns =
∑

j nj|s the total number of symbols seen at node s
and by NA = |A|, the alphabet’s cardinality. The children of

node s are denoted by C(s).

3.2.1. mdlPrune

For each node s in the resulted MTM compute Ls =
−∑

j nj|s log2 P̂j|s + NA
2 log2 ns. This is the two part

code description length [9] of the symbols seen at node s.

Starting in the root, for each node s prune all its children if

Ls <
∑

r∈C(s) Lr. According to the MDL principle, by this

pruning rule, we retain in the model the nodes that best de-

scribe the data, by penalizing the nodes that are too expensive

and thus over fitted to the training set.

3.2.2. freePrune

For each internal node r in the final MTM set L(r) = 0
and for each leaf s compute L(s) = −∑

j nj|s log2 P̂j|s.

The idea is to compute for each internal node, the shortest

codelength of the symbols that appear at all its descendants.

Thus, starting at the father nodes of the leaves, for a given

internal node r and each of its children s, compute Ir(s) =
−∑

j nj|s log2 P̂j|r. Ir(s) represents the codelength of the

symbols seen at s if they would be encoded with the distri-

bution of the symbols seen at the father node r. If Ir(s) ≤
(1 + p)L(s), then the codelength computed at the father node

xxyxzy
xyxz

−→ �xxyxzy�
�xyxz�

� x

�x x

�xx y

�xxy x

�xxyx z

�xxyxz y

�xxyxzy �
� x

�x y

�xy x

�xyx z

�xyxz �
prefixes

� x

� x

�x x

�x y

�xx y

�xyx z

�xxyx z

�xy x

�xxy x

�xxyxzy �

�xyxz �

�xxyxz y

contexts

Fig. 1. Context assignment in the MTM building process

is not that worse, and thus we can prune s and update L(r) =
L(r)+ Ir(s). If Ir(s) > (1+p)L(s), the parent node assign-

ment is not worthy and thus we keep s and update L(r) =
L(r) + L(s). The free parameter p controls the accuracy of

the resulted TM, as well as its size.

We have described by now all the ingredients of the new

algorithm lidComp: how to obtain a model for a given lan-

guage from a training set in the form of a TM and how to com-

pute the codelength of a word based on a given model. The

predicted language for the given word is the one that yields

the shortest description length.

4. RESULTS

The performance of the new algorithm lidComp was evalu-

ated for a configuration of six European languages: French

(fre), German (ger), Italian (ita), Portuguese (por), Spanish

(spa) and English (uk).

Table 1 presents the data that were used for our experi-

ment. We tested the lidComp’s accuracy on names and words.

The ”calibrating” set is used to set the free parameter p for

the freePrune pruning method, as follows: for each language

prune the MTM using different values for p and then, the TM

that best encodes the calibration set is selected as the language

model. All the resulted models are built independent of the

other languages in the configuration. For each language, the

three data sets are distinct.

Names fre ger ita por spa uk

training 4635 4534 3988 3666 4654 3186
calibrating 1825 1767 1572 1424 1837 1238

testing 2809 2766 2416 2242 2817 1948

Words fre ger ita por spa uk

training 9073 8783 7493 4911 7566 5897
calibrating 3577 3466 2925 1927 2964 2335

testing 5495 5316 4567 2983 4602 3562

Table 1. European languages - the number of names/words

used for training, calibrating, and testing.

The accuracy of the new algorithm is measured by the

4359

percentage of correct classified words for a given language,

i.e. how many times the true language yielded the first best
score (part (a) in Tables 2,3). We also report the results when

the true language has one of the first two best scores (part

(b) in Tables 2,3). This is meaningful in the context of ASR

systems since the language identification is prone to making

mistakes. Thus, the ASR system can build more (usually two)

acoustic models for the same vocabulary entry to increase the

chances of having the correct acoustic representation.

We have used two training/testing scenarios: distinct (Ta-

ble 2) where the training and test set for each language are dis-

tinct like in Table 1 and common(Table 3) where the training

set is like in Table 1, but the test set contains all the available

data: training, calibrating, and testing sets.

(a)

Names fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 73.87 88.29 74.79 49.60 72.70 72.23 71.91
mdlPrune 80.88 87.42 73.14 44.47 75.36 59.96 70.21

Words fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 74.25 87.79 82.66 70.23 69.56 76.61 76.85
mdlPrune 71.96 86.49 85.29 55.75 65.60 71.06 72.69

(b)

Names fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 85.90 93.89 89.82 76.81 87.22 86.19 86.64

mdlPrune 90.74 93.67 85.80 80.78 89.28 79.67 86.66

Words fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 86.42 93.60 92.25 87.60 87.40 89.81 89.51
mdlPrune 87.63 92.85 92.25 84.55 87.90 88.57 88.96

Table 2. Results on distinct sets: first(a) and first two(b) best.

The results on distinct sets are presented in Table 2. On

average, the two pruning rules lead to similar performance on

classifying names as well as words. In [8], the accuracy on

words of the proposed neural network based LID, was tested

for 25 languages. The classification accuracy varied between

57.36%-71.01% for the first best, depending on the configura-

tion used. The accuracy for the first two best varied between

75.03%-82.99%. Unfortunately, we couldn’t test lidComp al-

gorithm on the data set used in [8] because the data were not

available, but the percentages we obtain on our data set are su-

perior with more than 5% when using freePrune (see Words
in Table 2).

(a)

Names fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 84.14 92.48 80.27 64.55 83.56 81.37 81.06
mdlPrune 81.34 88.52 73.17 45.46 76.79 62.19 71.25

Words fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 83.52 92.01 89.81 81.06 81.43 85.16 85.50
mdlPrune 71.89 87.16 85.69 56.25 67.03 72.78 73.47

(b)

Names fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 92.93 96.53 92.44 86.96 93.03 91.82 92.20
mdlPrune 91.09 94.51 86.11 81.60 89.68 80.52 87.25

Words fre(%) ger(%) ita(%) por(%) spa(%) uk(%) avg(%)

freePrune 92.19 95.98 95.85 92.87 93.24 94.11 94.04
mdlPrune 87.61 93.07 92.96 84.60 88.67 89.65 89.43

Table 3. Results on common sets:first(a) and first two(b) best.

Table 3 presents the classification accuracy, when the test

set is composed half of the training data and half of new data.

This experiment was done because in practice it can be ex-

pected that some vocabulary entries were used also in train-

ing. Comparing Table 2 and Table 3, it can be seen that the

accuracy of lidComp when using mdlPrune is only marginally

improved, while the accuracy when using freePrune is im-

proved with more than 8% for the first best and with more

than 5% for the first two best.
The experiments presented here were carried out using

Matlab and the models are kept as ”.mat” files. When pruning

with mdlPrune, the size for all six models is 14.7kB for names
and 25.6kB for words. When pruning with freePrune, the size

for all six models is 113kB for names and 347kB for words.

The size of the models can be reduced by a more appropriate

representation than the one used by Matlab to encode ”.mat”

files, as well as by using different p values for the freePrune
pruning method.

5. CONCLUSIONS

In this paper we addressed the language identification of

words in the context of multilingual ASR systems. We pre-

sented a new algorithm lidComp that offers configuration

flexibility as well as high classification accuracy. The re-

sults show that tree machines, successfully used in the data

compression field, can be used also in classification tasks.

6. REFERENCES

[1] J. Iso-Sipila, M. Moberg, and O. Viikki, “Multi-lingual speaker-independent voice
user interface for mobile devices,” in ICASSP 2006. IEEE, 2006, vol. I, pp. 1081–
1084.

[2] G. Greffenstette, “Comparing two language identification schemes,” in 3rd Inter-
national Conference on Statistical Analysis of Textual Data, 1995.

[3] J. Prager, “Linguini: language ldentification for multilingual documents,” in 32nd
Hawaii International Conference on System Sciences, 1999, pp. 1–11.

[4] J. C. Schmitt, “Trigram-based method of language identification,” U.S. Patent
number: 5062143, 1991.

[5] M. Kantrowitz, “Method for identifying the language of individual words,” U.S.
Patent number: 6292772, 1998.

[6] J. Hakkinen and J. Tian, “n-gram and decision tree-based language identification
for written words,” in IEEE Workshop on Automatic Speech Recognition and
Understanding. IEEE, 2001.

[7] J. Tian, J. Hakkinen, S. Riis, and K. Jensen, “On text-based language identification
for multilingual speech recognition systems,” in Proceedings of 7th International
Conference on Spoken Language Processing, 2002, pp. 501–504.

[8] J. Tian and J. Suontausta, “Scalable neural network based language identification
from written text,” in ICASSP 2003. IEEE, 2003, vol. I, pp. 48–51.

[9] J. Rissanen, “Modeling by the shortest data description,” Automatica, vol. 14, pp.
465–471, September 1978.

[10] J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM J. Res.
Dev, vol. 20, pp. 198–203, May 1976.

[11] J. Rissanen, “A universal data compression system,” IEEE Trans. on Information
Theory, vol. IT-29, pp. 656–664, September 1983.

[12] M.J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory source,”
IEEE Trans. on Information Theory, vol. IT-41, pp. 643–652, May 1995.

[13] J. Rissanen, “A lossless data compression system,” U.S. Patent number: 7028042,
2006.

4360

