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ABSTRACT

We describe experiments in visual-only language identification,
in which only lip-shape and lip-motion are used to determine the lan-
guage of a spoken utterance. We focus on the task of discriminating
between two or three languages spoken by the same speaker, and we
have recorded a suitable database for these experiments. We use a
standard audio language identification approach in which the feature
vectors are tokenized and then a language model for each language
is estimated over a stream of tokens. Although rate of speaking ap-
peared to affect our results, it was found that different languages
spoken at rather similar speeds were as well discriminated as a sin-
gle language spoken at three extreme speeds, indicating that there is
a language effect present in our results.

Index Terms— language identification, lip-reading

1. INTRODUCTION

Automatic Language Identification (LID) is a mature technology that
can achieve a high identification accuracy from only a few seconds
of representative speech [1]. As visual speech processing has devel-
oped in the last few years, it is interesting to enquire whether lan-
guage could be identified purely by visual means. This has practical
applications in systems that use either audio-visual speech recogni-
tion [2] or pure lip-reading [3] in noisy environments, or in situations
where the audio signal is not available. This paper presents a prelim-
inary study in visual LID.

It is known that visual cues can be used by humans in speech
processing and contribute to intelligibility [4], but performance in
lip-reading is much lower than using audio, even by trained lip-
readers. Studies have shown that humans are also capable of iden-
tifying language from purely visual cues [5], but again performance
is much lower than that obtained using audio signals. The difference
between audio and video performance is due to two factors. The
first is that speech communication has evolved in such a way that the
audio rather than the video-signal has been optimized for error-free
communication. The second is that as the video is a secondary com-
munication channel, most people do not develop their lip-reading
ability. It is therefore not clear to what extent the task of identi-
fying language from facial features is difficult purely because it is
an unusual one that most people are not skilled in, or because the
information required for discrimination is not present in the visual
features.

The visual communication units of speech are known as visemes
[6]. Language identification using only the visual correlates of
speech poses a significant challenge as there are fewer distinct
visemes than phonemes. Broadly speaking, there is a many to one
mapping from phonemes to visemes, increasing the possibility of

confusion between speech units, and increasing the difficulty of
language identification.

This paper is structured as follows: Section 2 describes the video
dataset recorded for this language identification task. The developed
visual-only LID system is described in section 3. Section 4 explains
the test procedure to be used and presents results produced by the
system. Section 5 outlines further work and concludes the paper.

2. APPROACH AND DATABASE

Our previous experiments in lip-reading [3] have shown that the
features that we extracted for recognition were highly speaker-
dependent. Therefore, we decided that until some features that
exhibited greater speaker independence had been developed, our
task would be to discriminate between two or more languages read
by a single speaker. Hence we chose to record an audio-visual
database of multilingual speakers. This approach also has the ad-
vantage of focusing on the purely language-specific aspects of the
task, and largely eliminating the effect of an individual speaker.

The database recorded contains 21 subjects. These subjects were
fluent in at least two different languages, some in three. Typically,
these languages consisted of their mother-tongue and a language
that they had spoken for several years in an immersive environment.
Each subject read a script to a camera in all of the languages in which
they were proficient. The subjects were instructed to keep as still as
possible, to face the camera, and to avoid occluding their face. They
were asked to continue reading regardless of any small mistakes in
their recital.

The script chosen was the UN Declaration of Human Rights [7],
as translations of this text are available in over 300 languages. Sub-
jects were asked to read up to and including the first 16 articles of
the declaration, a text of about 900 words and typically lasting about
7 minutes. The video recorded was 50Hz interlaced scanning at
576x768 pixels, which was changed to 25Hz de-interlaced scanning
at 480x640 pixels after post-processing.

3. AAMS AND VECTOR QUANTIZATION

Fig. 1. shows the automatic video language identification system de-
veloped here. The video data is tracked using an Active Appearance
Model (AAM), as described in section 3.1. The vectors this process
produces are first clustered using vector quantization (VQ), detailed
in section 3.2, allowing the training data to be tokenized as VQ sym-
bols and bigram language models to be built from the resulting VQ
transcriptions. In testing, the AAM vectors are transcribed in the
same way and each language model produces a likelihood which is
classified by the method outlined in section 3.3.
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Fig. 1. Visual-only LID System Diagram

3.1. Features: Active appearance models

The AAM tracks the face and lips and produces a vector represent-
ing the shape and appearance for each frame of video. However, the
parameters corresponding to non-lip elements and also to the mouth
appearance are included only to assist tracking capability and are
discarded for training and testing, so that the vector consists only of
parameters that describe the lip shape. Principal Component Anal-
ysis (PCA) is applied to the set of vectors for an individual speaker
to reduce the dimensionality. The first few PCA components repre-
sent factors such as translation, rotation and scale, and are discarded,
leaving about five components to describe lip shape.

AAM generation requires a small number of ground truth frames
to build the statistical model used for tracking. The frames selected
must represent the extremities in shape that the tracker can expect to
encounter. In the system described here, an AAM is built for each
speaker using a manual selection of typical frames. These are taken
from near the start, middle and end of each language for a single
speaker, totaling no more than 15 frames per language.

3.2. Feature Modelling: Vector quantization

Because ”visemic” transcriptions are not available for the video data
used here (in fact there is no agreed method for transcribing visemes
from speech), we use a version of the system described in [8], in
which the signal is not transcribed as a sequence of phonemes, or in
our case, visemes. In [8], a Gaussian Mixture Model (GMM) was
used and the identity of the mixture component that was most likely
to have generated a frame was recorded and used as the input to a
language model. We have replaced this process with a straightfor-
ward vector quantization (VQ) process, which it closely resembles.
Once all AAM vectors have been produced from the video data, the
designated training segment is vector quantized using a standard k-
means algorithm.

3.3. Language model likelihood classification

Bigram language models for each language recorded by a speaker
are built from the codeword transcriptions of the training data for
each language from that speaker. Unseen codewords are smoothed
to a count of one during generation of the language models. Test data
is transcribed into codewords in the same way as the training data
and each language model produces a likelihood for a given utter-
ance. Back-off weights are calculated and used for unseen bigrams

in the test data. Classification of a test utterance is determined by
the bigram language model producing the highest total likelihood
for the given utterance. This is calculated by finding the sum of the
log probabilities from a language model across all frames in a test
utterance, giving the total probability of a test utterance given a lan-
guage model. A tie between all language model likelihoods for an
utterance is treated as a failure to classify.

4. EXPERIMENTS

Cross-fold validation was used to evaluate the performance of the
LID system. Experiments were performed on single speakers to
account for the high speaker dependency of the AAM features ex-
tracted, as already explained in section 2. An equal number of AAM
vectors from each language of a single speaker were divided sequen-
tially and exhaustively to give test utterance durations of either 60,
30, 7, 3 or 1 seconds. As an example, if a speaker read the decla-
ration in English (lasting 6 minutes) and French (lasting 7 minutes),
the frames in the shorter recital would be divided into 6 one-minute,
12 30-second, 51 7-second, 120 3-second and 360 1-second test ut-
terances. The longer recitals are trimmed to the length of the shorter
ones and are partitioned consistently with the shortest one. A sin-
gle test utterance is selected from each language and all remaining
test data is used for training. In each experiment the system must
classify a test utterance as one of the two or three languages spoken
by this particular speaker. The number of codewords used to vector
quantize the data is also an experimental parameter, ranging from 8
to 256.

Partitioning the data in the way described above means that the
number of test utterances for shorter test durations greatly exceeds
the number of longer duration utterances, e.g. for the 60 second
utterance tests in the three language case in Fig. 4., there are only
21 test utterances in total. Hence, a single mis-classification of a
60 second utterance translates to a 4.8% drop in average percentage
accuracy, which although apparently large, may not be statistically
significant.

4.1. Initial experiments

The results shown here demonstrate three separate LID experiment
results. These include one three language discrimination experiment
and two two language experiments. Each figure shows the mean
percentage classification accuracy for each duration of test utterance.
Tests using codebooks containing between 8 and 256 codewords are
presented.

Fig. 2, 3 and 4 show the results of tests on an English/Arabic
bilingual speaker, an English/German bilingual speaker and an En-
glish/French/German trilingual speaker. They suggest that classifi-
cation accuracy increases with test utterance duration and high ac-
curacy can be achieved for longer utterances. However, it seemed
somewhat improbable to us that one second utterances would be suf-
ficient to provide the high discrimination performance between two
languages (as shown in Figure 2) or between three languages (Figure
4). Furthermore, the performance of the eight codeword systems in
these figures suggests that eight mouthshapes are sufficient to repre-
sent the complete visemic inventory of up to three languages, which
was a surprising result. Given these results, it was decided to inves-
tigate extent to which unintended effects during recording may have
biased results. These would include changes in lighting intensity and
colour during the recording and changes in pose. Although we use
only the shape contours of the mouth, these factors can affect the per-
formance of the tracker, leading to uneven tracking performance, and
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Fig. 2. Testing an English and Arabic Bilingual
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Fig. 3. Testing an English and German Bilingual

this may be reflected in the results. However, we checked carefully
for these effects and were satisfied that they were either non-existent
or had been satisfactorily removed.

4.2. Removing rate of speech

Another possible explanation for the high accuracy achieved was that
the rate of speech might be responsible in part for the high classifica-
tion accuracy, so that what the system was actually classifying was
not the language, but the rate of speaking. Rate of speech is com-
monly considered to be a measurable characteristic that varies over
different languages, but in [9], Roach suggests that this is a sim-
plistic view. However, measurements of the length of the utterances
showed that speakers tended to speak their native tongue faster than
the other languages.

In a low codeword system, each codeword represents a broad
range of the feature space, and since rate of speech is linked to rate
of change of features, we would expect to see longer runs of the
same codeword in slower or less fluent speech. Such a character-
istic would be modeled by the bigram language models and would
therefore contribute towards classification effectiveness.

To test the hypothesis that we were actually measuring differ-
ences in rate of speech rather than differences in languages, we per-
formed a similar experiment to the one shown in Fig. 4., except
that repetitions of the same codeword were ignored and treated as a
single occurrence of the codeword. The accuracy of the eight code-
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Fig. 4. Testing an English, French and German Trilingual

word system dropped significantly, suggesting that rate of speech
was indeed having an effect on performance. Higher codeword sys-
tems were not affected, as finer clustering of the vector space re-
sults in close clusters of data being represented by a number of dif-
ferent codewords, and hence patterns of different codewords rather
than runs of the same codeword are likely to be observed in slowly-
changing speech. It is also interesting to observe the performance of
the lower codeword systems in Fig. 3., which are produced by the
speaker whose bilingual fluency is subjectively judged to be best of
those speakers presented in this paper and whose recitals of the UN
declaration in each language are almost equal in duration. It would
seem rate of speech does indeed effect the classification accuracy,
though the extent to which it contributes is not easily determinable
from these experiments.

4.3. Testing rate of speech

As a test of the sensitivity of our system to variations in speak-
ing rate, we tested it to see whether it could discriminate between
three recitations of the same language recorded at different speaking
speeds. The system was trained on a single speaker reading three En-
glish recitals of the UN declaration in English, read at three different
speeds: very slow, a normal reading pace and very fast. The test
here is whether or not each session is identifiable on rate of speech
alone. Rate of speech can affect an utterance’s phonetic content: for
instance, assimilation and deletion of phonemes are more prominent
in rapid speech. It is probable therefore that such a large difference in
speech rate, as tested here, will alter the phonetic and thus visemic
content of the speech, resulting in some ability to discriminate be-
tween sessions despite containing the same language.

Fig. 5. shows that similar discrimination is achieved to the three
language identification task of Fig. 4. However, the speed variation
in Fig. 5. is extreme: the durations of the readings of the text at fast,
medium and slow speeds were respectively 4.6, 6.2 and 7.8 mins,
whereas the durations of the texts read in three different languages
(Fig. 4.) were 7.2, 7.8 and 9.0 mins. Hence when different languages
were processed, a much smaller speed variation gave about the same
discrimination performance, which indicates that there is an effect
of language present.

4.4. Testing session biases

As a final test of the sensitivity of our system to variations in record-
ing conditions, we tested it to see whether it could discriminate be-
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Fig. 5. Testing three speeds of English

tween three recording sessions that we had designed to be identical:
the same speaker reading the same material in the same language at
the same speed. Without any deliberate variation in rate of speech
and in language, the system should be unable to discriminate be-
tween sessions and results should therefore be random at around
33%. Fig. 6. does show a significant reduction in system perfor-
mance when compared to Figs. 4 and 5. However the results are
statistically better than random. We can confidently exclude track-
ing consistency and subtle lighting differences as the causes of this
difference, since the AAM is trained with equal amounts of data
from all sessions and only shape features, rather than shape and ap-
pearance, are used for testing. It is more likely that there is a small
physical difference between sessions, such as slight pose variations,
or that reading performance across sessions was sufficiently different
to make the sessions distinguishable.
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Fig. 6. Testing three ’equal’ recitals of English

5. DISCUSSION AND FURTHER WORK

We have presented a preliminary study in identifying language
purely from visual features. Because we did not have access to
visual features that were independent of the identity of the speaker,
we recorded multilingual speakers and attempted to discriminate
them reading in two or three different languages. Our results are
currently equivocal, because they show that speaking-rate certainly
plays a part in identification, and speaking-rate is inextricably bound

up with the performance of the speaker in a certain language. A
further experiment showed that apparently even very small differ-
ences in performance by a speaker were picked up by our system
and were classified with above random accuracy. However, the fact
that different languages spoken at rather similar speeds were as well
discriminated as a single language spoken at three extreme speeds
indicates that there is a language effect present in our results.

To determine the suitability of this technique for visual-only
LID, we must first ascertain the contribution to classification per-
formance of visemic content differences caused by language, ignor-
ing non-language variation. The most effective way of achieving
this is to average out factors such as the rate of speech, pose and
any other potential biases by performing speaker independent lan-
guage identification on a larger number of speakers. To do this, we
will need features that are largely independent of the identity of the
speaker. Therefore, future work is to develop such features and test
the speaker independence of the this system by testing on a large
number of monolingual speakers in a manner similar to audio LID.
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