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ABSTRACT
In this study, we propose a new factor analysis-based model-

ing technique to more clearly describe the composition of the

supervector defined by the GMM model for dialect identifi-

cation. The method utilizes knowledge types of information

contained in the transcript file of the data. We evaluate the

effects of the proposed modeling algorithm on a GMM-based

Arabic dialect identification system. In particular, we com-

pare eigenchannel modeling and our proposed information in-

tegration modeling. We show that the proposed modeling can

obtain a 4.23% relative EER reduction with the same total

number of factors, and a 9.37% relative EER reduction with

the same number of channel/session factors versus eigenchan-

nel modeling.

Index Terms— Arabic, dialect identification, factor anal-

ysis, information integration

1. INTRODUCTION

Dialect identification is an emerging research topic in the

speech recognition community because dialect is one of the

most important factors next to gender that influences speech

recognition performance. Automatic dialect identification or

classification is important for characterizing speaker traits and

knowledge estimation which can be used in many fields. The

definition for dialect in this study is a pattern of pronuncia-

tion and/or vocabulary of a language used by the community

of native speakers belonging to some geographical region. In

previous studies, a Gaussian Mixture Model (GMM) based

classifier has been applied for unconstrained data [1]. There

are also successful methods based on reducing model con-

fusion for improved performance for dialect classification

[2, 3, 4].

Factor analysis has proven to be effective for speaker

recognition [5, 6], language recognition [7] and dialect iden-

tification [8]. Eigenchannel modeling, is an approach for
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channel compensation in the model domain [9] or feature do-

main [10], and is employed to characterize distortions of the

session/utterance via a small number of parameters in a lower

dimensional subspace, called the channel factors. Eigenvoice

modeling, as an approach for speaker adaptation, greatly re-

duces the number of parameters (e.g., speaker factors) to be

estimated for the new speaker.

In this study, a new modeling approach called informa-

tion integration based on factor analysis (IIFA) is described.

IIFA modeling is applied for analyzing the composition of the

supervector of the utterance by integrating multiple types of

information contained in the audio stream knowledge1. Ap-

plication of IIFA modeling for dialect identification can sig-

nificantly improve dialect ID performance.

2. REVIEW OF FACTOR ANALYSIS

The Gaussian Mixture Model has been a standard approach

in speaker and language identification. Factor analysis, as an

adaptation model, has been successfully applied for GMM-

based systems to address mismatch. In speaker recognition,

the supervector obtained by concatenating all mean vectors

in the GMM corresponding to a given utterance is applied

as the representation of the utterance. Since the supervector

M is speaker- and channel-dependent, it can be decomposed

into a sum of two supervectors, a speaker supervector s and a

channel/session supervector c:

M = s + c, (1)

where s and c are statistically independent. Furthermore,

the speaker supervector s can be decomposed into a sum of

two parts, a speaker- and channel-independent supervector m
which is the supervector of a UBM and a speaker-dependent

1In this study, the types of knowledge which are incorporated into the pro-

posed IIFA scheme include: gender, speaker, topic, dialect, session/channel.

We assume this information is part of the audio stream knowledge and that

it is contained in the corresponding transcription. However, all evaluations

here employ unsupervised train/test data, so no text transcripts are ever used,

only the corresponding audio stream knowledge.
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supervector ms:

s = m + ms. (2)

It is assumed that the distribution of ms and c can be de-

scribed by some hidden variables:

ms = v · y, (3)

c = u · x, (4)

where v and u are the rectangular matrixes of low rank, and y

and x are normally distributed random vectors. The columns

of v and u are referred to as eigenvoices and eigenchannels;

and the components of y and x are referred to as speaker and

channel factors. Based on the decomposition above, the su-

pervector M of the given utterance can be rewritten as:

M = m + ms + c = m + v · y + u · x. (5)

In speaker recognition processing, the speaker factors are em-

ployed to describe the speaker traits with limited data; the

channel factors are employed for channel composition against

the mismatch between training and test data.

In language or dialect recognition, similar models can be

employed. Since the amount of adaptation data is generally

large enough to perform classic MAP adaptation, which actu-

ally is a special case of factor analysis, from the UBM, it is not

necessary to employ a model such as eigenvoice to decrease

the dimensions of the variables (e.g., the vector y in Eq.5),

and therefore only channel/session composition is considered.

The supervector M of the given utterance can be represented

as:

M = m + md + c, (6)

where m is the supervector of the UBM, md is the lan-

guage/dialect dependent supervector which is obtained from

MAP adaptation, and c is the channel supervector which

corresponds to the same c in Eq. 5 for speaker recognition.

3. INFORMATION INTEGRATION BASED ON
FACTOR ANALYSIS: IIFA

Factor analysis has proven to be effective for GMM speaker

recognition and language/dialect recognition. A large data

pool is typically used to estimate the eigenspace v and u us-

ing PCA or EM iterations. In speaker recognition, the speaker

information in the transcription of the data pool is used to es-

timate the eigenvoices, and session information in the tran-

scription of the data pool is used to estimate the eigenchan-

nels (Note, in general we assume each utterance represents

one session). In language/dialect recognition, a similar proce-

dure is applied for estimation of the eigenchannels. However,

if we consider the used data pool carefully, many types of in-

formation can be contained in the transcription data, such as

gender, age, language, dialect, accent, speaker, channel, topic,

and so on. Normally, only one type of information from the

transcripts is used for special problems such as speaker in-

formation for speaker recognition. Here, it is suggested that

if more information is appended in solving the problem, bet-

ter performance can be obtained. The proposed Information

Integration based on Factor Analysis (IIFA) algorithm inte-

grates all information from the audio stream knowledge into

the identification system. In the IIFA model, for each ses-

sion/utterance, the supervector of the session can be expressed

as:

M = m +
N∑

k=1

mk, (7)

where M is the supervector of the session, m is the supervec-

tor of the UBM, mk is the kth supervector of the session, and

N is the number of the factor components used in the model.

Here, mk is the factor component representing the influence

from the kth factor type for the session such as supervector

ms and c in Sec.2. All factor components mk are assumed to

be statistically independent and N is dependent on the infor-

mation which can be found in the transcript or other sources.

Furthermore, it is assumed that the distribution of the super-

vector mk can be described by some variables:
mk = uk · xk, (8)

where uk is referred to as the eigenspace of the kth factor

component, and xk is referred to as the random vector of

the kth factor component. Under this model, when N = 1,

the IIFA model degenerates to the eigenchannel or eigenvoice

model individually; when N = 2, the IIFA model is equal to

a mixture of eigenchannel and eigenvoice models.

In the IIFA model, all factor components mk can be clas-

sified into three classes based on different problems: positive

components, negative components, and neutral components.

Positive components should support problem solving; nega-

tive components are supposed to reduce problem solving; and

neutral components have little impact on solving the prob-

lem. To improve the performance of identification, all pos-

itive components should be kept and described carefully, all

negative components should be suppressed as much as pos-

sible, and neutral components can be set aside since they do

not have significant impact on identification performance. For

different problems, the class of the factor component mk may

be different. For example, in speaker recognition, the mk

representing the speaker is the positive component, but it be-

comes the negative component in language identification. In

a manner similar to estimation of u and v in eigenchannel

and eigenvoice models, PCA without iterations or EM train-

ing can be used to compute the eigenspace uk; the factors

xk can be estimated for each test utterance in a step-by-step

manner using a similar algorithm as that used for eigenchan-

nel and eigenvoice models [5, 11].

4. SYSTEM DESCRIPTION

In this section, the GMM-based dialect recognition system is

described. The IIFA models are applied for the system.
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4.1. Arabic dialect corpus

Since the design and implemention of the IIFA model are de-

pendent on knowledge in the speech data’s transcripts, the di-

alect corpus used in this study is described first. The corpus

employed for this study consists of Arabic dialect data from

5 different regions, including United Arab Emirates (UAE),

Egypt, Iraq, Palestine, and Syria. A full set of 250 sessions

(500 speakers) are recorded in the corpus, with 100 speakers

per dialect. A set of 13 pre-selected topics were chosen with

the aim of achieving as much as possible an equal distribution

across all topics for the final database. The dialect, gender,

speaker and topic are labeled per recording per conversation.

After a silence removal process, the training data includes 43

hours of speech from the 5 dialects from 340 speakers; the

testing data consists of 20 hours of speech including 598 true

trials and 2392 impostor trials, with about 2 minutes per trial.

4.2. IIFA system

Since gender, dialect, speaker, and topic are labeled in the

transcript, the IIFA model in the dialect identificatin system

is designed as:

M = m + md + mg + ms + mt + mc, (9)

where M is the supervector of the session, m is the super-

vector of the UBM, md is the factor component representing

the dialect, mg is the factor component representing the gen-

der, ms is the factor component representing the speaker, mt

is the factor component representing the topic, and mc is the

factor component representing the session. The number of

factor components in the IIFA model N is equal to 5. Since

the purpose of the system is to identify the dialect, md will

be a positive component while mg , ms and mc are assigned

as negative components. The topic can be considered a neu-

tral component and can be set aside in the GMM based sys-

tem since topic is a factor related with the language domain,

not the acoustic domain. The UBM is trained on the entire

training data, and is adapted to dialect-dependent GMM mod-

els using classic MAP adaptation where md can be obtained.

All negative components are described by the product of the

eigenspace and the corresponding vector as:

mg = ug · xg, ms = us · xs, mc = uc · xc, (10)

where ug , us, and uc are the eigenspaces and xg , xs, and xc

are the corresponding vectors. The components of the vectors

are gender, speaker, and session factors. All eigenspaces are

computed using the simplified EM algorithm [12] in a step-

by-step manner and only means are considered. All random

vectors (e.g., xg , xs, and xc) for each session in the test phase

are estimated using the same algorithm. The likelihood ratio

score in [13] is used to make the decision as to accept or reject

the hypothesis that the utterance was spoken in a particular

dialect.
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Fig. 1. DET plot of Arabic dialect identification using IIFA

models with a total 100 factors.

Table 1. Performance of dialect identification over IIFA mod-

els with the same total of the factors.

IIFA model EER (%)

Session100 (N=2) 14.09

Speaker70 Session30 (N=3) 13.61

Gender2 Speaker68 Session30 (N=4) 13.46

5. EXPERIMENTS

All experiments use the shifted-delta-cepstra (SDC) feature

[14]: 7 MFCC coefficients (including coefficient C0) con-

catenated with SDC 7-1-3-7, which totals 56 coefficients per

frame. A UBM with 2048 mixtures was trained via ML cri-

teria, and adapted into five dialect dependent models (UAE,

Egypt, Syria, Iraq, and Palestine) using MAP with 20 EM iter-

ations with a relevance factor τ of 14. In Table 1, we show the

results for various designs of the IIFA model with the same

total 100 factors. The full DET plots for the IIFA models

with EERs from the table are shown in Fig 1. In the IIFA

model,when N = 2 (dialect factor component md was ob-

tained using MAP as before), the model reduces to the eigen-

channel model with 100 session factors (e.g., ”Session100”);

when N = 3, the model includes 70 speaker and 30 ses-

sion factors (e.g., ”Speaker70 Session30”); when N = 4, the

model includes 2 gender, 68 speaker, and 30 session factors

(e.g., ”Gender2 Speaker68 Session30”).

It is noted that the IIFA model with speaker and session

factor components can produce significantly better results

than the model with only the session factor component with

the same total factor number. Further gain is obtained with the

application of all three factor components (gender, speaker,
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Fig. 2. DET plot of Arabic dialect identification using IIFA

models with 100 session factors.

Table 2. Performance of dialect identification over IIFA mod-

els with the same number of the session factors.

IIFA model EER (%)

Session100 14.09

Gender2 Speaker68 Session100 12.77

and session). Since there are only two factors representing

gender, the improvement of IIFA with three factor compo-

nents is not as large, but there is still improvement over the

two factor components case.

Here, the number of session factors in the eigenchannel

model is 100, while, the number of session factors is only 30

in the IIFA model. So next, we change the number of ses-

sion factors in the IIFA model from 30 to 100, which is equal

to the number of session factors in the eigenchannel model.

Fig.2 shows DET performance of eigenchannel and IIFA with

N = 4 when the number of session factors is the same in both

cases. In the figure, the number of the session factors is kept

at 100 in the eigenchannel model, while the dimension of the

session factors is set to 100 instead of 30 as in the IIFA model

(gender and speaker factors are kept), which makes the same

number of session factors estimated on the utterance for both

models (e.g., ”Gender2 Speaker68 Session100”). Significant

improvement is obtained with the IIFA model versus eigen-

channel as seen in Table2 (i.e., 14.09% vs. 12.77% EER).

6. CONCLUSION

This study has shown that IIFA modeling provides an effec-

tive mismatch compensation for GMM-based dialect iden-

tification. The major advantage of IIFA modeling is more

effective utilization of the transcript/stream knowledge. It

should be emphasized that only general stream knowledge is

employed, not the specific word or phoneme information for

either train or test. The approach suppresses negative com-

ponents and keeps positive components with a more clear

description of the composition of the utterance. Application

of IIFA modeling in Arabic dialect identification obtains a

4.23% relative improvement versus eigenchannel with the

same total number of factors; and 9.37% relative improve-

ment versus eigenchannel with the same number of session

factors. Future research will consider applying the proposed

modeling approach for speaker recognition to characterize

components of the speaker while employing less factors.
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