
FAST ACOUSTIC COMPUTATIONS USING GRAPHICS PROCESSORS

Paul R. Dixon Tasuku Oonishi Sadaoki Furui

Department of Computer Science, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo, Japan, 152-8552

ABSTRACT

In this paper we present a fast method for computing acoustic like-
lihoods that makes use of a Graphics Processing Unit (GPU). After
enabling the GPU acceleration the main processor runtime dedicated
to acoustic scoring tasks is reduced from the largest consumer to just
a few percent even when using mixture models with a large number
of Gaussian components. The results show a large reduction in de-
coding time with no change in accuracy and we also show by using
a 16bit half precision floating point format for the acoustic model
parameters, storage requirements can be halved with no reduction in
accuracy.

Index Terms— Speech recognition, LVCSR, GPGPU, WFST

1. INTRODUCTION

Acoustic scoring is the often most computational intense component
of a large vocabulary speech decoder. Much previous research has
focused on techniques to reduce or speed-up these calculations for
example, using clustering, pruning, vectorization or look-aheads us-
ing less complicated models [1, 2, 3, 4, 5].

In this paper we describe our approach to fast acoustic scor-
ing that moves the task completely off the CPU to execute on
the Graphics Processor Unit (GPU). Modern graphics GPUs have
evolved into a massively parallel processor with phenomenal float-
ing point throughput and memory bandwidth. The field of Gen-
eral Purpose computations on GPUs (GPGPU) emerged to allow
non-graphics applications to harness this massive computational
resource. GPGPU was initially a very complicated task because of
the restrictive GPU programming model, however, the introduction
of the Compute Unified Device Architectures (CUDA) framework
by NVIDIA has simplified the development allowing GPGPU to
become a more mainstream tool. GPGPU has been successful in
many other scientific and engineering applications. In [6] we first
proposed a GPGPU proof of concept technique for acoustic scoring
in speech recognition.

The technique we introduce in this paper represents a signifi-
cant advance in the performance of our decoder. We first describe
our method that allows for the acoustic computation to be moved
to the GPU. The scheme allows for concurrent utilization of both
the GPU and CPU during the recognition process. Thorough eval-
uations are presented on a large vocabulary spontaneous task using
a set of models of varying complexity. The results demonstrate a
speed-up in all cases with the most significant speed-ups occurring
for mixture models with large numbers of Gaussians. We show by
using the GPU it is possible to increase the number of Gaussians in
the system by two orders of magnitude whilst incurring practically
no slow down. Finally, we demonstrate the soon to be standard half
floating point format allows more efficient memory and bandwidth
usage with no loss in recognition accuracy.

2. GPU HARDWARE AND CUDA

In these evaluations we used an NVIDIA 8800GTX card which is
equipped with a 128 core G80 GPU. The G80 is implemented as a set
of eight multiprocessors, where each multiprocessor is a Single In-
struction Multiple Data (SIMD) processor containing 16 cores. Each
of the multiprocessors cores executes the same instruction stream in
parallel operating on different portions of data. CUDA provides a C
like language for writing kernels, these are the functions that execute
on the GPU. Functions are also provided for allocating buffers on the
graphics cards and transferring data between the graphics and main
memory. The PCI-Express x16 bus to the GPU provides a theoreti-
cal peak transfer rate of 4GB/s in each direction. Under the CUDA
framework the GPU becomes a massively threaded co-processor.
Thread creation on a GPU is very cheap and this is just one of the
crucial factors that differentiates a GPU from a modern multi-core
CPU. In fact to get maximum performance from a GPU it is neces-
sary to launch massive amounts of threads (in the order of thousands
for the current generation of hardware). The GPU excels at certain
types of computation and therefore when selecting algorithms for the
GPGPU the essential first step is to select routines that will benefit
most from the GPU architecture. With much more of the silicon area
dedicated to computation the GPU excels at arithmetic intense com-
putations such as dense matrix multiplication, conversely due to the
lack of hardware such as branch prediction obtaining performance
gains on code containing a large amount of conditional logic is more
difficult.

3. ACOUSTIC SCORING USING GPUS

Our GPGPU approach is a hybrid scheme that uses the CPU and
GPU to perform different computations during the speech decoding
process. The rationale behind the design is to target the GPU for
floating point and memory bandwidth intense acoustic computations
and the CPU to perform the part of the search algorithm that in-
volves dynamic data structures and frequent control flow operations.
Through concurrent operation we also ensure both processors are
kept working as much as possible.

3.1. Approach to Likelihood Computations

In the GPU approach the likelihood computation is performed as a
matrix multiplication. The acoustic parameter matrix A will have
one row for every Gaussian in every state, leading to a total row
count of states × Gaussians’ per state. Given a state the ith the J
dimensional weighted Gaussian with diagonal covariance is given
by:

wi

2π
J
2

“Q
j σ2

ij

” 1
2

exp

−
X

j

„
xij − μij

σij

«2
!

(1)

4321978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

This can be expressed as a row vector of length 2J +1 according to:j
Ki,

μi1

σ2
i1

, . . . ,
μij

σ2
ij

,− 1

2σ2
i1

, . . . ,− 1

2σ2
ij

ff
(2)

Where wi is the weight, μij and σ2
ij are the mean and variance in

the jth dimension and Ki is:

log wi − J

2
log 2π − 1

2

X
j

log σ2
ij − 1

2

X
j

μ2
ij

σ2
ij

(3)

Given an acoustic feature vector x the score of every Gaussian of
every mixture can be calculated simultaneously by first expanding
the feature vector to:

zT =
˘
1,x1, . . . ,xJ ,x2

1, . . . ,x
2
J

¯
(4)

and then performing the matrix vector multiplication y = Az [7].
The result is a vector y containing log weighted scores of the feature
vector for every Gaussian component for every state mixture model.

3.2. Performance Enhancements

After moving the Gaussian computations to the GPU the following
enhancements are also used to maximize the GPU usage and address
the communications bottleneck between the CPU and GPU.

Batching smaller transfers into larger transfers reduces the fre-
quency of calls to the GPU. This involves sending windows of acous-
tic frames to the GPU for calculation. On the device we now receive
a matrix W that contains a windows of n feature vectors:

W = {z1, z2, ..., zn} (5)

The scores for every Gaussian in every mixture for the entire win-
dow are computed using the matrix multiplication F = AW, each
column in F contains the log weighted scores for every Gaussian
component of every mixture model for the corresponding feature
vector in W. Another advantage of the batching approach is the
use of the faster matrix-matrix multiplication sgemm that performs
more floating point operations per memory move. For this a highly
tuned matrix multiply implementation [8] was used.

To reduce the size of the transfers back to the host, the GPU also
performs the logsum part of the acoustic computation:

log p (x) = log

 X
i

wip (x | θi)

!
(6)

Because we are dealing with the log weighted Gaussian scores
log wjpj(x | θj) the necessary precautions are taken to avoid nu-
merical underflows when performing the summation. The device
logsum is a highly parallel implementation that makes use of the
GPU hardware log and exp operations. A matrix of state mixture
scores M is computed in parallel from the matrix of Gaussian scores
in F and a reduction pattern is used to maximize performance. This
gives a window × mixture models block of mixture model scores
and increasing the Gaussians per mixture will not increase the size
of the transfers during decoding. The host acoustic score cache
logic is now redundant because we have all the acoustic scores for
the window in a compact block of memory. This small contiguous
representation may also bring performance increases by reducing
the cache misses[7, 3] as the acoustic scores are accessed during the
search.

If a host buffer is allocated using standard page-able memory
every time a transfer is initiated the CUDA drivers will allocate a

temporary page-locked buffer to hold a copy of the data whilst per-
forming the transfers. By always using page-locked memory for the
host transfer buffers it should be possible to obtain further speed-ups.

When the GPU is computing acoustic scores the CPU is idle
waiting for the kernels to complete. If search and acoustic scor-
ing could occur in parallel further performance benefits could be
achieved by hiding the GPU compute latencies. To remove the need
for a multi-threaded solution we make use of the streams and asyn-
chronous launches available in CUDA 1.1[9]. The CUDA stream
objects allow multiple kernels or CUDA functions to be grouped
together into a single unit which can be launched from a single in-
vocation. When a function is launched asynchronously control will
return to the CPU immediately, the CPU can poll the GPU to find
out whether the function has completed.

3.3. Decoder Integration

Two methods are exposed to the decoder to allow for asynchronous
operation. A compute function that will launch a stream to perform
the following: Transfer sample window to GPU; Compute Gaussian
scores as matrix multiplication; Compute mixture scores using log-
sum; Transfer scores back to host.

A wait method is used to query the GPU for computation condi-
tion and act as a barrier. The GPGPU implementation was integrated
into the large vocabulary decoder currently under development at
Tokyo Institute of Technology[6]. The decoding engine is a time-
synchronous Viterbi beam system that operates on Weighted Finite
State Transducer (WFST)[10] search spaces. The decoder can use
the compute method to calculate state scores for windows of feature
vectors. After the first window has been computed, the decoder can
launch the next window compute asynchronously, allowing the CPU
to decode the current window scores simultaneously. This asyn-
chronous pattern is repeated until all features have been computed
and decoded. The wait method is used to enforce correct synchro-
nization between the CPU and GPU.

3.4. Half Precision Floating Point

The decoder uses single precision floating point representation and
we have found speech decoding does not benefit from using the 64
bit double precision format. The revised IEEE floating point specifi-
cation also describes a 16bit half precision format which has a sign
bit, five bit exponent and a 10 bit mantissa. Currently CUDA has
limited hardware 16bit float support for texture stored via the driver
level API [9]. Future versions of CUDA may provide more flexible
usage of the 16bit floats, also the upcoming Larrabee processor [11]
will also support storage and hardware conversion of 16bit floating
point. Fixed point representations have already been investigated to
reduce memory or computation for example in [12], however, half
floats are interesting because of the potential for standard hardware
support. To evaluate the suitability of this new format a software
implementation is used to investigate the accuracy of the GPU ac-
celerated decoder when storing acoustic model parameters as 16bit
floats.

4. EVALUATIONS

4.1. Experimental Setup

4.1.1. Corpus and Test Set

Our evaluations were done on the Corpus of Spontaneous Japanese
(CSJ). The 10 lecture test-set was segmented into 2328 utterances.

4322

4.1.2. Acoustic Features

The original 16kHz raw speech was first segmented into utterances,
then converted to a 39 dimensional Mel-frequency cepstral coeffi-
cients (MFCC) based parametrizations with a 10ms frame rate and
25ms window size. Each feature vector was composed of 12 MFCC
values and an energy term with delta and delta–delta values. The en-
ergy term was then discarded to give the final 38 dimensional feature
representations.

4.1.3. Models

A set of acoustic models of various complexities were built to allow
us to investigate the speed characteristics of the GPU accelerated
decoder. The topology of all the HMM acoustic models was a three
state left-to-right tri-phone model. The state output mixture models
were built using an Expectation-Maximization (EM) algorithm with
mixture model splitting. There were eight sets of acoustic models
each with 3000 states, the mixture models contained power-of-two
sizes from two to 512 Gaussian components per mixture each with
diagonal covariance.

The language model was a back-off trigram using Katz discount-
ing with a vocabulary of 65k words trained using the CSJ training
data. The knowledge sources were used to create a H ◦ C ◦ L ◦ G
recognition cascade, where H represents the acoustic models, C the
context-dependency, L is the lexicon and G is the language model.
The factored arcs were dynamically expanded in the decoder.

4.1.4. Evaluation Platform

The experiments were conducted on a 2.4GHz Intel Core2 based ma-
chine with an NVIDIA 8800GTX graphics processor. The operating
system was 32bit Linux variant and the decoder was compiled using
the GCC compiler against CUDA toolkit version 1.1.

4.2. Results

We compared the GPU accelerated system with a window size of 32
to a baseline CPU implementation that performed on demand acous-
tic computations, made use of the CPU vector instructions, and sub-
stituted the logsum of equation 6 with a logmax approximation that
selects only the top scoring Gaussian.

Figures 1 and 2 shows the Real Time Factor (RTF) vs accuracy
curves for both the CPU and GPU accelerated decoders for beam
widths of 100, 125, 150, 175 and 200. When using identical search
parameters a very slight increase in accuracy is observed in the GPU
system owing to the use of the full logsum. We also implemented a
GPU logmax function and observed identical recognition accuracy
as the CPU implementation. The speed of the GPU logmax and log-
sum implementations was identical, this is party because the GPU
has fast logarithm and exponential implementations. Therefore, un-
like the CPU approach another advantage of technique is the expen-
sive logsum can be used on the GPU with no sacrifice in speed.

The GPU accelerated decoder is faster than the CPU approach
for all model sizes and beams widths that were evaluated. To fur-
ther illustrate this point Figure 3 shows the speed-up factor when
enabling the GPU for the various parameter settings.

The closer bunching of the GPU curves indicates that increas-
ing the model order is much less costly on the GPU system. For a
wider beam increasing the model complexity has only a negligible
reduction in decoding speed. This behaviour can be explained by
the profiler output for the GPU evaluations in Figure 4 which shows
the percent of CPU time spent in acoustic scoring related code. We

see regardless of model size, typically only a very small percent of
the CPU runtime is dedicated to acoustic scoring related tasks. Be-
cause of insufficient training material the accuracy for the 256 and
512 component mixtures reduced, the results were included to show
that the GPU acceleration could use these large models with little
speed penalty. In the GPU accelerated decoder what is traditionally
the most computational demanding task has been reduced to just a
few percent even for a significant amount of Gaussians.

 66

 68

 70

 72

 74

 76

 78

 0 0.5 1 1.5 2 2.5 3

C
P

U
 A

cc
ur

ac
y

(%
)

RTF

512
256
128
64
32
16

8
4
2

Fig. 1. RTF vs accuracy of the decoder when using CPU based
acoustic scoring.

 66

 68

 70

 72

 74

 76

 78

 0 0.5 1 1.5 2 2.5 3

G
P

U
 A

cc
ur

ac
y

(%
)

RTF

512
256
128
64
32
16

8
4
2

Fig. 2. RTF vs accuracy of the decoder when using GPU based
acoustic scoring.

4.3. Discussion of Technique

After moving the acoustic scoring to the GPU, computing scores on
a window of frames was most effective in obtaining the large speed-
ups. When switching from a single frame to just a small window we
saw the largest improvements, after a window size of approximately
30 frames the speed converged to constant value.

Using the asynchronous operation and allowing the decoder to
simultaneously use the GPU and CPU gave the biggest speed-ups
for the larger models of 128 Gaussians and greater. This indicates
for the smaller models even on a window of frames the whole calcu-
lation is very fast and the CPU isn’t stalled much waiting for GPU
computations to complete.

Page locked buffers lead to a several percent reduction in RTF
and was a simple improvement requiring only small code changes.

Running the logsum on the card gave a large speedup when com-
pared to a CPU based logsum and using a card based logsum is no

4323

 0

 2

 4

 6

 8

 10

 100 120 140 160 180 200

Ti
m

es
 S

pe
ed

up

Beam Width

512
256
128

64
32
16
8
4
2

Fig. 3. Speed-up factor of the decoder after enabling GPU based
acoustic scoring.

 0

 2

 4

 6

 8

 10

 100 120 140 160 180 200

C
P

U
 p

er
ce

nt
an

ge
 o

n
lik

el
ih

oo
ds

Beam Width

512
256
128
64
32
16

8
4
2

Fig. 4. Percent of CPU runtime dedicated to acoustic scoring after
enabling GPU based acoustic scoring.

more expensive than a logmax. Either approach allows for the acous-
tic score cache to be replaced with a simple buffer.

4.4. Half Precision Floating Point Evaluations

The final evaluations illustrate the decoder’s accuracy when storing
parameters in half float format and using GPU acceleration. Table
4.4 shows the accuracy when using 16, 32 and 64 component mixture
models with the parameters stored in either single or half floating
point. In all cases the half float representation did not cause any
major reduction in accuracy.

Beam
Precision Gaussians 100 125 150 175 200

Single 16 71.2 75.99 77.15 77.42 77.55
32 71.86 76.81 78.13 78.44 78.49
64 72.15 76.94 78.09 78.3 78.42

Half 16 71.24 75.97 77.1 77.4 77.54
32 71.9 76.81 78.12 78.44 78.49
64 72.17 76.94 78.08 78.31 78.43

Table 1. Accuracy of the decoder when using half and single preci-
sion floating point storage for acoustic model parameters.

5. CONCLUSIONS

In this paper we have introduced our GPU acoustic computation
scheme that gives a substantial speed-up by moving all the acoustic
likelihood calculations off the CPU and does not cause any accuracy
trade-offs. The approach can rapidly compute large mixture models
and we show the GPU technique is especially well suited to tasks that
demand large numbers of Gaussians. The implementation is highly
parallel and will scale to future GPUs that have a larger number of
cores. For future work we will attempt to move more of the decoder
to execute on the graphics card. We have additionally verified the
16bit floating format point is sufficient for storing acoustic model
parameters, halves memory requirements and has the potential for
standardized hardware support.

6. REFERENCES

[1] X.L. Aubert, “Fast look-ahead pruning strategies in continuous
speech recognition,” in Proc. ICASSP, 1989, pp. 659–662.

[2] K. Knill, M. Gales, and S. J. Young, “Use of Gaussian selec-
tion in large vocabulary continuous speech recognition using
HMMs,” in Proc. ICSLP, 1996, pp. 470–473.

[3] G. Saon, G. Zweig, B. Kingsbury, L. Mangu, and U. Chaud-
har, “An architecture for rapid decoding of large vocabulary
conversational speech,” in Proc. EUROSPEECH, 2003, pp.
1977–1980.

[4] A. Chan, R. Mosur, A. Rudnicky, and J. Sherwani, “Four-layer
categorization scheme of fast GMM computation techniques in
large vocabulary continuous speech recognition systems,” in
Proc. INTERSPEECH, 2004, pp. 689–692.

[5] V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur,
A. Ljolje, S. Parthasarathy, M. Rahim, G. Riccardi, and M. Sar-
aclar, “The AT&T WATSON speech recognizer,” in Proc.
ICASSP, 2005, pp. 1033–1036.

[6] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui, “The
Titech large vocabulary WFST speech recognition system,” in
Proc. ASRU, 2007, pp. 1301–1304.

[7] M. Saraclar, M. Riley, E. Bocchieri, and V. Goffin, “Towards
automatic closed captioning : Low latency real time broadcast
news transcription,” in Proc. ICSLP, 2002, pp. 1741–1744.

[8] V Volkov and J W. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008, pp. 1–11.

[9] NVIDIA Corporation, “NVIDIA CUDA compute unified de-
vice architecture programming guide,” 2007.

[10] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech and Lan-
guage, vol. 16, no. 1, pp. 69–88, 2002.

[11] L Seiler, D Carmean, E Sprangle, T Forsyth, M Abrash,
P Dubey, S Junkins, A Lake, J Sugerman, R Cavin, R Es-
pasa, E Grochowski, T Juan, and P Hanrahan, “Larrabee: a
many-core x86 architecture for visual computing,” ACM Trans.
Graph., vol. 27, no. 3, pp. 1–15, 2008.

[12] E. Bocchieri and D. Blewett, “A decoder for LVCSR based
on fixed-point arithmetic,” in Proc. ICASSP, 2006, pp. 1113–
1116.

4324

