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ABSTRACT

This paper investigates methods for coping with out-of-
vocabulary words in a large vocabulary speech recognition task,
namely the automatic transcription of Italian broadcast news. Two
alternative ways for augmenting a 64K(thousand)-word recognition
vocabulary and language model are compared: introducing extra
words with their phonetic transcription up to 1.2M (million) words,
or extending the language model with so-called graphones, i.e. sub-
word units made of phone-character sequences. Graphones and pho-
netic transcriptions of words are automatically generated by adapt-
ing an off-the-shelf statistical machine translation toolkit. We found
that the word-based and graphone-based extensions allow both for
better recognition performance, with the former performing signif-
icantly better than the latter. In addition, the word-based extension
approach shows interesting potential even under conditions of little
supervision. In fact, by training the grapheme to phoneme transla-
tion system with only 2K manually verified transcriptions, the final
word error rate increases by just 3% relative, with respect to starting
from a lexicon of 64K words.

Index Terms— Automatic Speech Recognition, Open-vocabulary
speech recognition, OOV words

1. INTRODUCTION

Large vocabulary continuous speech recognition (LVCSR) systems
operate with a fixed and finite vocabulary, with typical vocabulary
sizes in the order of 60K-100K word forms. In open vocabulary
applications (e.g. broadcast news transcription) these systems of-
ten encounter words not included in the recognition vocabulary, also
called out-of-vocabulary (OOV) words. OOV words are a signifi-
cant source of errors in modern automatic speech recognition (ASR)
systems. Not only the ASR system replaces an OOV word with a
phonetically similar word/words, but often the error spreads to the
nearest words [1]. In addition, OOV words are often named-entities
and can be key-words for applications such as spoken document re-
trieval.

Recently, several works have proposed solutions to deal with
OOV words. Some of these works propose approaches that use a
combination of weakly (i.e. phone) and strongly (i.e. word) con-
strained recognizer to detect OOV and overcome vocabulary limi-
tation [2, 3, 4]. Other works adopt an open-vocabulary recognition
approach, using a hybrid language model (LM) containing words
and subword units [5, 6, 7]. The most used subword units in OOV
recognitions are graphones [8].

This work was partially financed by the Province of Trento, under the
project RIVA.

A graphone is a pair of a letter sequence and a phoneme se-
quence of possibly different lengths. Graphones are widely used
in OOV recognition since they allow immediate conversion from
phones to word. Several works [6, 7, 9] investigated the use of gra-
phone units to extend a vocabulary with 20K-64K words. While this
is a typical vocabulary size for LVCSR, current state-of-the art sys-
tems can handle much larger vocabularies.

In this work we first present a method to automatically gener-
ate word pronunciations (lexicons) starting from a manually created
training lexicon. This method is based on a simple adaptation of an
off-the-shelf statistical machine translation toolkit, to generate both
a phone pronunciation and the most likely graphone sequence for
each word. The proposed method achieves results similar to those
obtained with the joint-multigram model presented in [8]. Hence,
we compare the approach described in [6], namely to recognize OOV
words by means of a hybrid word/graphone LM, with the simpler al-
ternative of extending the recognition vocabulary up to 1.2M words
by automatically extending the corresponding lexicon. Finally, we
also considered the hypothesis of bootstrapping the grapheme-to-
phoneme translation tool from a small supervised lexicon of 2k-5k
words, showing in this way that the proposed method is robust even
under limited training data conditions.

The paper is organized as follows. Section 2 describes our
grapheme-to-phoneme translation system and presents accuracy re-
sults on our Italian lexicon. Section 3 describes the experimental
framework and details about corpora used to train the FBK-irst
speech recognition system. Section 4 presents results of speech
recognition experiments employing automatically generated word
pronunciations together with word- and graphone-based language
models. Section 5 reports experiments carried out by bootstrapping
grapheme-to-phoneme translation from small manually verified
lexicons. Discussions and conclusions are reported in Section 6.

2. GRAPHEME-TO-PHONEMECONVERSION

Phonetic transcription of words can be addressed as a grapheme-
to-phoneme machine translation task: a ”source” string of charac-
ters is translated into a corresponding ”target” string of phonemes.
Thus, we employed a publicly available phrase-based statistical ma-
chine translation toolkit, called Moses [10]. Hence, phrase-pairs of
grapheme-phoneme strings were automatically learned from a train-
ing lexicon by applying the procedure reported in the documentation
of Moses 1. Besides the phrase-table, a target phoneme-based n-
gram language model was estimated, as well as feature functions
that penalize overlong or too short translations. The combination of

1See http://www.statmt.org/moses/
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all such components was finally optimized with a minimum error
training step. Finally, translations were computed with a monotonic
decoding setting to inhibit word re-ordering between source and tar-
get positions. Graphones are derived from the best translation hy-
pothesis by recovering the corresponding phrase-pairs used by the
Moses decoder.

Grapheme-to-phoneme conversion was tuned and tested on a
baseline 64K-word lexicon that was developed semi-automatically
for the FBK-irst Italian broadcast news system [11]. As a prepro-
cessing we removed words with letters other than A-Z and apostro-
phes. We retained multiple pronunciations of words. The lexicon
was randomly split into a training, development and test set (see Ta-
ble 1 for details).

Total words 63,786
Training words 40,658
Development words 10,279
Testing words 12,849
Transcriptions per word 1.007

Table 1. Statistics and partitions of the Italian lexicon.

Phrase table and target LM of the translation system were esti-
mated on the training portion of the baseline lexicon. We tested per-
formance using phone-based n-gram LMs with order ranging from
5 to 7. Optimal phrase (or graphone) maximum length was found
within the range 3 to 6. We evaluated results using the phone-error-
rate (PER), computed with respect to the closest pronunciation vari-
ant available in the baseline lexicon. (Notice that only 458 words
contain multiple phonetic transcriptions.) Tables 2 reports PER re-
sults achieved on the test portion of the lexicon.

LM order Maximum graphone length
3 4 5 6

5-grams 1.78% 1.73% 1.72% 1.72%
6-grams 1.76% 1.73% 1.73% 1.73%
7-grams 1.77% 1.73% 1.73% 1.72%

Table 2. Phone-error-rate (PER) of grapheme-to-phoneme conver-
sion of Italian words through statistical machine translation. PERs
are reported for different target language model orders and maxi-
mum phrase lengths used by the phrase-based decoder.

It seems that for the Italian language n-gram order and maxi-
mum graphone length have almost no influence on translation per-
formance. This is probably due to the fact that for Italian word
pronunciation is very close to its spelling, with only few exceptions
depending on the context in which letters appears. For the sake of
comparison, we trained and tested on the same data the grapheme-to-
phoneme tool based on the joint-multigram model described in [8],
obtaining comparable results (1.40% PER). From this preliminary
analysis, we decided to use in the following experiments a 5-gram
LM and graphones/phrases of maximum length 4.

3. EXPERIMENTAL FRAMEWORK

The test bed for our investigation is the automatic transcription
of Italian broadcast news. Acoustic models (AMs) were trained
on about 130 hours of manually and automatically transcribed

speech [11]. LMs were estimated on 600M word corpus including
newswire and newspaper articles. The LM corpus contains about
1.2M unique words. Finally, test data consists in 21 TV news shows
recorded during March-April 2008. Table 3 reports detailed statistics
about these speech corpora.

Train Dev Test
# hours 129h:30m 3h:46m 3h:29m
# utterances 115,024 544 470
# words 1,228,000 40,701 33,181
Dictionary - 7,652 6,321

Table 3. Statistics of speech corpora used for ASR experiments.

Experiments were carried out using the FBK-irst speech recog-
nition system [12]. In particular, feature extraction embeds cepstral
mean subtraction, variance normalization, and projection of acous-
tic features, based on Heteroscedastic Linear Discriminant Analy-
sis. Finally, acoustic data are normalized using Constrained MLLR-
based Speaker Normalization [13]. For acoustic models we employ
state-tied, cross-word triphone HMMs. Output distributions associ-
ated with HMM states are modeled with mixtures of up to 16 diago-
nal covariance Gaussian densities.

4. OPEN VS HUGE VOCABULARY ASR

ASR experiments carried out with the aim of reducing the influence
of OOV words. Grapheme-to-phoneme translation was trained on
the 64K-word baseline lexicon, described in Section 2, and used to
expand the baseline vocabulary in various ways.

1. Following a procedure similar to the one reported in [6], we
can replace all OOV words in the LM training corpus with
their most likely graphone sequence. The recognition vocab-
ulary is then augmented with all graphones inferred by this
procedure and the modified text is used to train a hybrid word-
graphone LM.

2. A second approach is to extract the list of OOV words from
the LM training corpus and generate pronunciations for each
word. All OOV words are then added to the recognition lexi-
con and then a conventional word-based LM is trained using
the extended vocabulary.

3. A mixed strategy for representing OOV words is also investi-
gated. We select a subset of the most frequent OOV words for
which we generate an automatic pronunciation, while the rest
is replaced in the LM training corpus with their most likely
graphone sequence. OOV words and graphones are added to
the recognition vocabulary and a hybrid word-graphone LM
is trained like in the first strategy.

Two 4-gram word-based LMs were trained: one using the 64K-
word baseline lexicon (“64K”) and one using an extended lexicon
using all words in the training corpus, about 1.2M words, 1,136K
of which requiring automatic phone transcriptions. We also trained
three 4-gram hybrid word-graphone LMs, with a vocabulary of 64K
words, 128K words and 256K words, each corresponding to the most
frequent words in the LM training corpus. The total number of dif-
ferent graphones was 8,799, 8789 and 8,499 for the 64K, 128K and
256K word vocabulary, respectively. All 4-gram LMs were trained
using improved Kneser-Ney smoothing.
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Table 4 reports the number of OOV words and OOV rates on
the development and test sets for the different vocabulary sizes. We
can see that very low OOV rates are achieved with the 1.2M-word
vocabulary.

LM Dev Test
# OOV OOV% # OOV OOV%

64K 794 1.95% 572 1.72%
128K 399 0.98% 310 0.93%
256K 211 0.51% 134 0.40%
1.2M 103 0.25% 69 0.21%

Table 4. OOV statistics of language models with increasing vocab-
ulary sizes.

Table 5 reports recognition results, in terms of word error rate
(WER) achieved on the development and test sets using the five
aforementioned LMs. Notice that prior to the evaluation process we
converted graphones to their constituent letters and merged adjacent
graphones to form word hypotheses .

LM Dev Test
64K 21.52% 18.30%
64K+graphones 20.97% 17.58%
128K+graphones 20.65% 17.31%
256K+graphones 20.55% 17.25%
1.2M 19.74% 16.64%

Table 5. Word-error-rate results of the speech recognizer when using
language models of increasing vocabulary size, possibly including
graphones.

The test corpus is quite challenging, given the presence of back-
ground music, disfluent speech and noise, which led to relatively
high WERs. It can be noted that there is a significant difference be-
tween performance achieved with the 64K word LM and with the
1.2M word LM. Relative reduction in WER between the two LMs
is about 8-9%, on both data sets. Hybrid word/graphone LMs per-
form slightly better than the baseline 64K word LM. In particular,
the “64K+graphones” LM allows a 2.6% and 4% relative reduction
in WER with respect to the “64K’ LM, on dev and test sets, respec-
tively.

We can conclude that generating automatic transcriptions of
OOVwords and adding them to the recognition vocabulary produces
better performance than using a hybrid word-graphone LM. In fact,
WER decreases in both data sets as the dictionary size increases.
However, we have to remember that the hybrid word-graphone LMs
are able to recognize previously unseen words, while the 1.2M word
LM is in fact a closed-vocabulary LM. For the sake of comparison,
we also tested the 1.2M-word LM with a lexicon generated with a
joint-multigrams model also trained on the baseline lexicon. Recog-
nition performance on the dev and test set were only slightly better:
19.67% and 16.56%, respectively.

In addition to WER results, we are also interested in the ability
to recover OOV words. Table 6 reports the precision, recall and F-
score of the hybrid LMs and of the 1.2M word LMwhen recognizing
OOV words on the test set. Results are computed considering OOV
words with respect to the 64K word vocabulary.

All LMs show very high precision values, meaning that there are
almost no insertions or substitutions of OOV words. Recall values

LM Precision Recall F-score
64K+graphones 0.99 0.32 0.48
128K+graphones 0.99 0.36 0.53
256K+graphones 0.99 0.36 0.53
1.2M 0.98 0.43 0.60

Table 6. Precision, Recall and F-score of OOV words on the test set,
with respect to the 64K words vocabulary.

achieved by the hybrid LMs is quite low, with about a third of the
OOV words correctly recognized. Remarkably, the 1.2M-word LM
shows the best recall, i.e. 0.43.

5. EXPERIMENTSWITH LIMITED RESOURCES

When training a recognition system on a new language with scarce
language resources, a common bottleneck is usually the size of the
pronunciation lexicon. Thus, we investigated the performance of the
grapheme-to-phoneme translation tool with respect to the amount of
available training data.

The graphene-to-phoneme translation tool was trained on a sub-
sample of the baseline lexicon described in Section 2. We considered
two sample sizes, 2K and 5K words. Two sampling methods were
also considered:

• Frequency-based sampling: the words with the highest fre-
quency in the LM training corpus are selected. This approach
guarantees to have the highest number of words with correct
(manual) transcriptions. On the contrary it does not guarantee
any good phonetic coverage.

• Random-based sampling: words are selected randomly.
This approach shows to provide better phonetic coverage, but
it can possibly produce wrong transcriptions for very frequent
words.

We generated one lexicon for each size and sampling method,
leading to 4 different lists. A grapheme-to-phoneme translation tools
were trained on each vocabulary. Table 7 reports performance, in
term of PER, achieved with the 4 systems on a 10K words subset
of the baseline lexicon, which is disjoint from the 4 training sets, of
course. PER was again computed with respect to the closest pronun-
ciation variant.

Sample size Sampling criterion
Random Frequency

2K words 3.26% 4.16%
5K words 2.96% 3.74%

Table 7. Phone-error-rates by grapheme-to-phoneme decoders
trained on different sub-samples of the baseline lexicon.

Random-based sampling shows to provide better transcription
accuracy that than frequency-based sampling. Notice however that
the used test set is a list of words that does not reflect frequency
properties of words.

As expected, results obtained with a 5K word training vocabu-
lary are better than the ones achieved with a 2K word training vo-
cabulary. PERs are however significantly worse than those achieved
with the system described in Section 2.
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These four systems were then used to transcribe all the words
contained in the LM training corpus and not included in their re-
spective training vocabulary, generating an automatic pronunciation
for each word. The four 1.2M-word vocabularies thus obtained were
used as recognition vocabularies for ASR experiments. The IBN cor-
pus (see Table 3) was also transcribed with each vocabulary, and then
used to train AMs with the same procedure described in Section 3.
Table 8 reports recognition results, in terms of WER, achieved with
the four trained ASR systems. As a reference, results achieved
with the 1.2M vocabulary, generated with the system trained on the
64Kword baseline lexicon, are also reported (see Table 5, last row).

Bootstrap vocabulary Dev Test
2K-random 20.54% 17.62%
2K-frequency 20.26% 17.13%
5K-random 20.36% 17.70%
5K-frequency 20.01% 17.18%
64K 19.74% 16.64%

Table 8. Word-error-rates achieved with a 1.2M word LM using
automatic phonetic transcriptions learned from small sub-samples
of the baseline lexicon.

Results are to our view interesting: with only 2K manually
checked word pronunciations, we can develop a system that per-
forms better than one using a 64K-word LM relying on a manually
verified lexicon (see Table 5, first row). With respect to the sampling
procedure, we see opposite results with respect to the phone-error-
rates. As remarked, this is mainly due to the fact that the frequency-
based sampling guarantees to use correct transcriptions of very fre-
quent words. Results obtained with 5K lexicon are similar to those
obtained with a 2K lexicon on the test set, and just slightly better on
the dev set. Remarkably, these WERs are just slightly worse, 1.5%
to 3% relative, than those achieved after training the grapheme-to-
phoneme system on the 64K-word baseline lexicon, reported in Ta-
ble 5.

6. CONCLUSIONS

In this paper, we investigated different approaches to improve OOV
word recognition in a large vocabulary speech recognition task.
First, we presented a simple method to automatically generate word
pronunciations and graphone sequences starting from a manually
checked 64K-word lexicon. We used this method to extend the 64K-
word baseline recognition vocabulary up to 1.2M words (i.e. the
entire LM training corpus vocabulary), with automatically gener-
ated phonetic transcriptions. We then used the new augmented vo-
cabulary to train a conventional word-based 4-gram LM. We com-
pared this approach with an approach similar to the one presented
in [6], that is to create an open-vocabulary recognition by replacing
all OOV words in the LM training corpus with their most proba-
ble graphone sequence and training with the modified text a hybrid
word-graphone LM.

Recognition experiments were carried out on an Italian broad-
cast news task. Results showed that the augmented vocabulary
produces lower error rates than representing OOV words with gra-
phones. In addition, although the 1.2M word recognition vocabu-
lary is finite, it resulted in very low OOV rates of about 0.2% and
better OOV word recognition than then hybrid word-graphone LM.
Experiments carried out assuming little supervised lexicons to train

grapheme-to-phoneme translation systems, suggested that very com-
petitive performance can be achieved with only 2K words.

While these result is very promising, there are still open issues
that we want to investigate. First, to overcome the limitations of
closed-vocabulary systems we will consider LMs combining a huge
vocabulary with graphone units. Moreover, we will evaluated the
proposed approaches on the English language, which has quite dif-
ferent characteristics than the Italian language.

7. REFERENCES

[1] I. Bazzi, “Modelling Out-of-Vocabulary Words for Robust
Speech Recognition,” Ph. D. Thesis, Department of Eelectrical
Engeneering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 2002.

[2] H. Ketadbar, M. Hannemann, and H. Hermansky, “Detection
of out-of-vocabulary words in posterior based asr,” in Proc. of
INTERSPEECH. 2007, ISCA, 1757-1760.

[3] L. Burget et al., “Combination of strongly and weakly con-
strained recognizers for reliable detection of oovs,” in Proc. of
ICASSP. 2008, IEEE.

[4] N. Bertoldi, M. Federico, D. Falavigna, and M. Gerosa, “Fast
speech decoding through phone confusion networks,” in Inter-
speech 2008. 2008, ISCA, To appear.

[5] A. Yazgan and M. Saraclar, “Hybrid language models for
out of vocabulary word detection in large vocabulary conver-
sational speech recognition,” in Proc. of ICASSP, Montreal,
Canada, May 2004, vol. 1, pp. 745–748.

[6] M. Bisani and H. Ney, “Open Vocabulary Speech Recognition
with Flat Hybrid Models,” in Proc. of INTERSPEECH, Lisboa,
Portugal, Sept. 2005, pp. 725–728.

[7] K. Vertanen, “Combining open vocabulary recognition and
word confusion networks,” in Proc. of ICASSP. 2008, pp.
4325–4328, IEEE.

[8] M. Bisani and H. Ney, “Investigations on Joint-multigram
Models for Grapheme-to-Phoneme Conversion,” in Proc. of
ICSLP, Denver, CO, Sep. 2002, pp. 105–108.

[9] M. Akbacak, D. Vergyri, and A. Stolcke, “Open-vocabulary
spoken term detection using graphone-based hybrid recogni-
tion system,” in Proc. of ICASSP. 2008, IEEE.

[10] P. Koehn et al., “Moses: Open source toolkit for statistical ma-
chine translation,” in Proc. of the 45th Annual Meeting of the
Association for Computational Linguistics Companion Volume
Proc. of the Demo and Poster Sessions, Prague, Czech Repub-
lic, 2007, pp. 177–180.

[11] F. Brugnara, M. Cettolo, M. Federico, and D. Giuliani, “Ad-
vances in automatic transcription of italian broadcast news,” in
Proc. of ICSLP, Beijing, China, Oct. 2000, pp. 660–663.

[12] Fabio Brugnara et al., “The itc-irst transcription systems for
the tc-star-06 evaluation campaign,” in TC-STAR Workshop on
Speech-to-Speech Translation, Barcelona, Spain, June 2006,
pp. 117–122.

[13] D. Giuliani, M. Gerosa, and F. Brugnara, “Improved automatic
speech recognition through speaker normalization.,” Computer
Speech and Language, vol. 20, no. 1, pp. 107–123, Jan. 2006.

4316


