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ABSTRACT
This paper addresses selecting between candidate pronun-

ciations for out-of-vocabulary words in speech processing

tasks. We introduce a simple, unsupervised method that

outperforms the conventional supervised method of forced

alignment with a reference. The success of this method is

independently demonstrated using three metrics from large-

scale speech tasks: word error rates for large vocabulary

continuous speech recognition, decision error tradeoff curves

for spoken term detection, and phone error rates compared to

a handcrafted pronunciation lexicon. The experiments were

conducted using state-of-the-art recognition, indexing, and

retrieval systems. The results were compared across many

terms, hundreds of hours of speech, and well known data sets.

Index Terms— Speech processing, Speech recognition,

Speech synthesis
1. INTRODUCTION

Several speech processing applications including large vocab-

ulary continuous speech recognition (LVCSR), spoken term

detection (STD), and speech synthesis rely on a fixed vocab-

ulary and a pronunciation for each word therein. This pro-

nunciation lexicon typically contains mappings from an or-

thographic form of a word (e.g. QUEDA) into a phonetic

form (e.g. /k aa d ax/) that can be used for decoding, index-

ing, retrieval, or synthesis. Although the pronunciation lexi-

con remains fixed, realistic use requires a constantly chang-

ing vocabulary resulting in words that are out-of-vocabulary

(OOV). OOVs can be new words, rare words, foreign words,

or words unknown to be important at the time the lexicon was

formed. Adjusting to change in vocabulary demands the gen-

eration of pronunciations and a need to automatically select

between candidates. Therefore, this work addresses the ques-

tion: given a word in any language, and a set of candidate

pronunciations, how can you determine the best pronuncia-

tion of that word?

Challenges within OOV modeling and pronunciation vali-

dation are not new, but issues with OOV words have tradition-

ally been given less attention due their low impact on word

error rate (WER). Recent work [1, 2] and the development

of the STD task [3] have highlighted their importance as rare

words, which are therefore information rich.

An initial approach to create pronunciations for OOV em-

ploys a trained linguist, but they are expensive, often produce

inconsistent representations, generate few pronunciations per

hour, and have limited areas of expertise [4]. Therefore ef-

fort has been made toward data-driven pronunciation model-

ing. Previous work [4, 5] addressing pronunciation validation

comes from pronunciation modeling attempting to simulta-

neously generate/validate pronunciations using existing lex-

ica [4], linguistic rules [6], speech samples [7, 8], or all of

the above (see literature pronunciation modeling, grapheme-

to-phoneme, letter-to-sound). Such work generally includes

criteria for creating a pronunciation for an OOV that involves

the modality of data used to create it (e.g. generating pro-

nunciations from lexica tests against comparisons to held out

entries in the lexica, generating pronunciations from speech

forced-alignment uses accuracy or WER of speech samples).

The previous work on data-driven pronunciation modeling

addresses pronunciation variation [4, 8] or common words

[5, 9]. In [7] they concentrate on names and places, direc-

tory services, noting that proper names can be hard where it

is difficult to reuse letter-to-sound rules from common words.

For example, in [7] they learn pronunciations from au-

dio samples along with rules from an existing lexicon and de-

velop an iterative algorithm for pronunciation refinement; ac-

curacy of recognition on directory assistance samples is mea-

sured. For many cases using speech samples including [6],

the standard score comes from aligning the speech sample of

a word against the putative pronunciation, sometimes with a

filler model for likelihood ratio threshold. In [6] they augment

acoustic likelihood with linguistic features and use a decision

tree classifier rather than a threshold; they attempt to verify

pronunciations for literacy assessment and treat the problem

as estimating a confidence score over a short utterance (the

word of interest).

This work departs from the standard framework of simul-

taneously generating and testing pronunciations. We are ag-

nostic about where candidates come from, isolating the task

to choose between them. Furthermore, we concentrate on a

large number of difficult words, of which many are foreign

proper names and places. Our evaluation involves large-scale

speech tasks with large data sets in an effort to present results

that generalize. We use two methods to select between can-
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didate pronunciations: a conventional supervised method via

forced-alignment, and unsupervised method via recognition.

We compare these two methods via three metrics: phone

error rate (PER) against a reference pronunciation to analyze

the difference with a handcrafted lexicon, WER for LVCSR

to see impact on their recognition as well as their impact on

recognizing other words in the vocabulary, and decision error

tradeoff (DET) curves for STD for searching OOVs. The

end goal was to identify a methodology for picking correct

pronunciations. This work was conducted as part of the Johns

Hopkins University summer workshop (JHUWS08) team

’Multilingual Spoken Term Detection’ where pronunciations

were generated via letter-to-sound models, those augmented

from web data, or from transliteration models .

2. BASELINE SUPERVISED METHOD

Our baseline mechanism for choosing between two candidate

pronunciations was to pick the pronunciation with higher av-

erage acoustic likelihood from a forced-alignment with a ref-

erence, with the average taken over several speech samples.

Performance is measured from approximately 500 words

via three metrics: edit distance to a reference lexicon, WER

on decoding 100 hrs of speech, and STD DET curves on the

LVCSR lattices for the same 100 hours.

2.1. Data set, OOV terms, systems

Our goal was to address pronunciation validation using

speech for OOVs in a variety of applications (recognition,

retrieval, synthesis) for a variety of types of OOVs (names,

places, rare/foreign words). To this end we selected speech

from English broadcast news (BN) and approximately 500

OOVs. The OOVs were selected with a minimum of 5 of

acoustic instances per word, and common English words

were filtered out to obtain meaningful OOVs (e.g. NATALIE,

PUTIN, QAEDA, HOLLOWAY). Once selected, these were

removed from the recognizer’s vocabulary and all speech ut-

terances containing these words were removed from training.

For each OOV, two candidate pronunciations are consid-

ered, each from a variant of a letter-to-sound system. These

OOVs were taken from a larger set used to compare web-data

augmented letter-to-sound systems, a subset on which two

particular letter-to-sounds systems differed. For details the

reader is referred to [8].

The LVCSR system was built using the IBM Speech

Recognition Toolkit [10] with acoustic models trained on 300

hours of HUB4 data with utterances containing OOV words

excluded. The excluded utterances (around 100 hours) were

used as the test set for WER and STD experiements. The

language model for the LVCSR system was trained on 400M

words from various text sources. The LVCSR system’s WER

on a standard BN test set RT04 was 19.4%. This system was

also used for lattice generation for indexing for OOV queries

in the STD task along with the OpenFST based Spoken Term

Detection system from Bogazici University [11].

2.2. Supervised validation

Let X denote a sequence of acoustic observation vectors; the

objective of the recognizer is to find the most likely word se-

quence W ∗ given the acoustic vectors:

W ∗ = arg max
W

p(W |X) (1)

= arg max
W

p(X|W )p(W ) (2)

where Equation 2 comes from rewriting Equation 1 using

Bayes’ rule and considering that p(X) does not play a role

in the maximization; p(X|W ) denotes the acoustic likelihood

of the acoustic observations given a word sequence hypothe-

sis W ; p(W ) is the prior probability of that word sequence

W as defined by a language model.

The conventional method for selecting between pronun-

ciation candidates involves using a transcript and perform-

ing a forced alignment against it: during alignment there is

a constraint in decoding path W to the reference transcript

(with each word replaced by its pronunciation in the lexicon),

augmented with candidate pronunciations. Speech data that

contain the OOV are aligned with the acoustic models corre-

sponding to each candidate pronunciation via Viterbi search,

and the maximum likelihood acoustic score determines the

’winner’ candidate [5, 4, 7, 6].

Some of the work referenced above attempts to improve

the decision function or include additional information while

simultaneously generating and validating pronunciations.

Our work assumes that pronunciations have been provided

and seeks to decide between them. Also, this work concen-

trates on simple and fast methods for large scale heteroge-

neous applications.

3. UNSUPERVISED METHOD

Using standard automatic methods (e.g. Section 2.2) for ver-

ifying pronunciations requires transcribed audio, which can

cost as much as 100$/hr (common) - 400$/hr (new language)

to transcribe. Transcription is time-consuming, laborious, and

difficult to recruit/keep labelers for transcribing. However, in

many applications meta-data can alleviate the need by point-

ing to speech likely to contain a word of interest, which can

be used to select between candidate pronunciations for that

word. For example, items in the news, television shows, etc.

are a rich source of untranscribed speech for unsupervised

validation.

Moreover, often we do not have access to a transcript cor-

responding to audio examples of an OOV, but we may have

some knowledge it has occurred in an audio archive. For ex-

ample, we may know from meta-data that a broadcast news

episode recently aired about a conflict in Iraq, and at present it

would give us high confidence to find examples of words like
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word hyp prons ref prons phn err%

QAEDA k aa d ax k ay d ax

QAEDA k aa ey d ax
. 40

SCHIAVO sh ax v ow s k h aa v ow

SCHIAVO s k y ax v ow sh iy aa v ow

Table 1. Example pronunciations and PER

QUEDA. We may not know how many times it was spoken,

or where in the audio, but we can still use the entire broad-

cast to help us choose between hypothesized pronunciations

for QUEDA.

In the absence of labeled examples we use unsupervised

recognition to select between candidate pronunciations. We

decode data likely to contain the OOV with each candidate,

calculate the average acoustic likelihood over the entire data,

and choose the candidate with the highest average likelihood

as the ’winner’. This corresponds to using Equation 1 to de-

code speech ’as is’ (without the extra constraint on the decod-

ing path to the reference as in the supervised case).

4. RESULTS

For each of the metrics below, a pronunciation lexicon was

created for the set of OOVs (approximately 500). For every

OOV there were two candidate pronunciations from differ-

ent letter-to-sound systems, and we compare the two meth-

ods described above for choosing between the two candidates

for this set (along with an ’upper-bound’ and ’lower-bound’).

These 500 words were removed from a handcrafted lexicon,

therefore we have a set of ’true’ pronunciations. The ’upper-’

and ’lower-bound’ take advantage of this knowledge, denoted

plex − best and plex − worst. plex − best selects the can-

didate that is the closest (in edit distance) to a reference pro-

nunciation that word, and plex − worst selects the farthest.

For example, in Table 1 two OOVs are listed, each with

two hypothesized pronunciations. Here, plex − best would

have as members ’/k aa d ax/’ and ’/sh ax v ow/’.

The two methods compared are those described above,

where sup−force denotes the lexicon created from selecting

pronunciations based on supervised forced-alignment with a

reference, and unsup − reco denotes the lexicon created

from selection based on unsupervised decoding. For the un-

supervised case approximately the time for one broadcast

news show was decoded using each candidate pronunciation,

making sure to include all the speech examples used for the

forced-alignment somewhere in the data.

4.1. Large vocabulary continuous speech recognition

In addition to comparing methods using the performance in

speech tasks, we can see which method produces pronunci-

ations that are closest to a reference. For example in Table

1, if speech had selected the bold pronunciations, there are 4

errors out of 10 phones w.r.t. the closest reference pronuncia-

tion (e.g. QAEDA: /ay/ to /aa/, insert /ey/; SCHIAVO: insert

/iy/, /ax/ to /aa/) resulting in a 40% PER.

Since the plex−best was artificially selected for this met-

ric, it becomes the upper-bound (although this isn’t the case

for speech tasks shown below). In Figure 1 the PER is plot-

ted for each of the methods at 3 system configurations. The 3

configurations were created with different levels of language

model pruning, and demonstrate differences based on sys-

tem performance (in WER). The systems’ WER on the RT04

data set at the various configurations were 29.3%, 24.5% and

19.4% corresponding to 360, 390, and 450 respectively. Note

the x-axis is #words, which corresponds to the number of the

OOV types that were decoded via the unsupervised method,

and hints at a limitation that will be discussed below. With

regard to PER, the unsup − reco has lower error rate at all

system configurations compared to sup − force, which ac-

cords with the results below.

Fig. 1. Phone Error Rate w.r.t. reference lexicon

The methods for selecting between candidate pronunci-

ations described above were used to decode 100 hours of

speech that contained all of the OOVs. Standard WER was

used to compare these methods in Table 2. Note that unsup−
reco outperforms all others. Also, note that the candidate pro-

nunciations give about a half percent WER range (between

the best and worst), and that selecting based on the phone edit

distance to the reference does not directly translate to better

ASR WER.

4.2. Spoken term detection

Lattices generated by the LVCSR system for the 100 hours

test set were indexed and used for spoken term detection ex-

periments in the OpenFST based architecture described in

[11]. Our goal was to see whether our WER results corre-

lated with another speech task like spoken term detection. To
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Method ASR WER% #errors

plex-worst 17.8 193,145

sup-force 17.3 187,772

unsup-reco 17.3 187,424
plex-best 17.4 188,517

Table 2. LVCSR WER

this end, the same sets of pronunciations were used as queries

to the STD system. Results from the OpenFST based index-

ing system are presented in a DET curve using NIST formu-

las and scoring functions/tools from the NIST 2006 evalua-

tion. The DET curves in Figure 2 show that plex − best and

unsup − reco work the best for detection at nearly all oper-

ating points.

Fig. 2. STD DET Curves

5. DISCUSSION

We have presented an unsupervised method for pronuncia-

tion validation via recognition that works better than conven-

tional validation via forced-alignment. This success has been

demonstrated using 3 metrics for large-scale speech tasks:

Phone Error Rate on a large set w.r.t. a reference lexicon,

LVCSR Word Error Rate on decoding a 100 hours of speech,

and STD DET Curves on the same.

The usual argument for unsupervised speech methods:

they save considerable time and money over speech tran-

scription or using a linguist, which is enticing as long as the

performance degradation isn’t too harmful. However, for

selecting a candidate pronunciation our unsupervised method

does not suffer any degradation, and actually performs better

as it naturally filters out unhelpful speech samples by em-

ploying the power of comparison (search) and a language

model. In all of the experiments our notion of phone errors

were based on a word-to-phone pronunciation lexicon; there

were no manual phonetic transcriptions used.

There are several limitations to this method. Unsuper-

vised recognition can’t always verify a word (if neither pro-

nunciation is ever decoded), although this provides a natu-

ral check against comparing many bad candidates (alignment

will always give a score). It requires having seen it or words

like it in text (LM), which is not unreasonable given that a

word comes into fashion somehow. It’s possible that false

alarms might hurt (if an OOV sounds like common word), but

the 3 configuration experiments indicate that isn’t a problem

for these words of interest. Finally, the performance could

depend on amount or type of data decoded, which is the basis

of our future work.
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