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ABSTRACT

We measure the effects of a weak language model, estimated

from as little as 100k words of text, on unsupervised acous-

tic model training and then explore the best method of using

word confidences to estimate n-gram counts for unsupervised

language model training. Even with 100k words of text and

10 hours of training data, unsupervised acoustic modeling is

robust, with 50% of the gain recovered when compared to su-

pervised training. For language model training, multiplying

the word confidences together to get a weighted count pro-

duces the best reduction in WER by 2% over the baseline lan-

guage model and 0.5% absolute over using unweighted tran-

scripts. Oracle experiments show that a larger gain is possi-

ble, but better confidence estimation techniques are needed to

identify correct n-grams.

Index Terms— Unsupervised Training, Word Confi-

dence, Conversational Telephone Speech, Language Model-

ing

1. INTRODUCTION

State of the art performance in large vocabulary speech recog-

nition (LVCSR) usually requires hundreds to thousands of

hours of manually annotated speech and millions of words

of text. But manual transcription is often too expensive or

impractical. Even worse, many domains do not have millions

of words of text required to build strong language models.

However, we can rely upon the assumption that any domain

which requires LVCSR technology will have hundreds to

thousands of hours of audio available. Unsupervised acoustic

or language model training builds initial models from small

amounts of transcripts or text and decodes hundreds to thou-

sands of hours of audio. We then train new models using

these automatic transcripts. We hope to drastically reduce the

labeling requirements for LVCSR in sparse domains.

Previous work on unsupervised acoustic model training

(AM-UT) worked remarkably well with very little amounts

of labeled training data. Lamel et al. [1] reported that training

with only ten minutes of labeled data achieved a 33% rela-

tive reduction in WER when using 135 hours of unlabeled
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audio. They saw gains with both large (one billion) and small

(one million) word in-domain LMs. Recent work by Ma and

Schwartz [2] used a strong out-of-domain LM and one hour

of labeled audio to decode 2000 hours of unlabeled audio.

There was a dramatic gain from a starting WER of 51.2% to

27.0%. In this paper, we will extend these results and measure

the impact on AM-UT using weaker out-of-domain language

models. Inspired by the success with AM-UT, we will con-

sider several methods for producing n-gram counts for unsu-

pervised language model estimation (LM-UT). Then we will

attempt to improve word confidences and directly model n-

gram confidences and understand the limits of confidence es-

timation for language modeling with oracle experiments.

1.1. Corpus and System

All results are on English conversational telephone speech

(CTS), primarily using the Fisher corpus [3]. We constructed

a 2000 hour corpus out of 2300 hours of Fisher data, balanc-

ing for gender. Out of this larger set, we selected smaller

labeled and unlabeled training sets, the smaller sets always

being subsets of the larger. The terminology 1+2000 means

one hour of supervised audio plus 1999 hours (2000 - 1) of

unlabeled audio. All reported error rates are on the three hour

Dev04 test set from the NIST Hub5 English evaluation. We

also verified our results with the six hour Eval03 set. Our lan-

guage modeling text consists of 1.1 billion words: 200M from

broadcast news text and 900M words of ’conversational-like’

text from the web [4]. We select subsets of these two sources

to model acoustic and language model resource conditions.

BBN Technologies’ speech recognition system, BYB-

LOS, is a multi-pass LVCSR system that uses state-clustered

tied-mixture models [5]. To save time, we only used maxi-

mum likelihood estimation instead of discriminative training.

Decoding requires three passes: a forward and backward

pass to generate an n-best list, which is then rescored using a

strong language model. These three steps are repeated after

speaker adaptation using CMLLR.

1.2. Metric

We use the ”WER Recovery” metric introduced by Ma and

Schwartz [2] to gauge success of our unsupervised tech-
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niques. Since we have manual annotations for our ”un-

labeled” audio set, we can compare the WER with initial

models (I), unsupervised models (U), and supervised models

(S).

WER Recovery =
WERI −WERU

WERI −WERS
(1)

WER Recovery measures what fraction of the gain from su-

pervised training can be recovered by unsupervised training.

2. UNSUPERVISED ACOUSTIC MODEL TRAINING

In [2] Ma and Schwartz compared different unsupervised

training strategies and found that the ”use-all-data” strategy

works better than any incremental bootstrapping procedure.

Their approach was to first build acoustic and language mod-

els with the limited available manually labeled data. Using

these poor initial models, they decoded the unlabeled audio

and then estimated the confidence of each utterance to have

a WER below a threshold [6]. Finally, they rejected low

confidence utterances (25% - 50% depending on the quality

of recognition) and trained new acoustic models. They saw a

small additional gain after a second iteration of this process

but not typically after a third. We use this strategy in all

experiments reported in this paper.

2.1. Results with Weaker Language Models

Here, we study the impact of language model quality on unsu-

pervised acoustic training. While we expect WER Recovery,

from eqn. (1), with weaker language models to degrade, the

hope is that unsupervised training performance will still be ro-

bust and give significant gains. We report results for a variety

of acoustic conditions with three language models: 1.1 billion

words of broadcast news and web data (1B), 1 million words

of broadcast news (1M), and the 100k words from the initial

10 hours of transcripts (100K). Results with the 1B word LM

come from Ma and Schwartz [2] and are directly comparable

to our results.

Table 1 details results for various starting conditions. Of

course, the baseline and supervised WER are higher with

weaker LMs. But the WER Recovery numbers also show that

the weaker the LM becomes, unsupervised training is able

to recover less of the gain from supervised training. Starting

with the 1B LM, WER Recovery degrades by 10% on average

for the 1M word LM and by 20% for the 100k LM. As the

amount of data increases, the unsupervised training recovers

more of the supervised gain. This trend, first established

by [2], continues to hold with weaker LMs. Our weakest

condition is with only the ten hours (100k words) of manual

transcripts (last two lines of Table 1). The baseline and super-

vised WER increase by 7% absolute and the WER Recovery

with 2000 hours of audio decrease to 48% compared to the

1M LM. It is clear that a strong external knowledge source

increases both absolute performance and WER Recovery.

LM Audio Base Unsup Sup Recovery

1B BN

1+32 51.2 38.7 30.1 59%

1+200 51.2 32.3 24.5 70%

1+2000 51.2 26.8 21.0 80%

10+200 36.4 29.0 24.5 62%

10+2000 36.4 26.1 21.0 67%

1M BN

1+32 56.5 46.9 36.6 47%

1+2000 56.5 35.3 26.6 71%

10+200 41.8 37.5 30.7 38%*

100k
10+200 43.9 39.0 32.4 43%

10+2000 43.9 36.7 28.8 48%

Table 1. Unsupervised Training with Different Language Models -

These results are with various combinations of labeled/unlabeled audio (Col-

umn 2)and initial acoustic models. The baseline (Column 3) uses an acoustic

model trained only on the labeled audio. Unsupervised training (Column 4)

is after 2 iterations and we compare that to the supervised condition (Column

5) of using manual transcripts for all available audio and report WER Recov-

ery (Column 6). The 1M LM degrades Recovery by 10% on average and the

100k LM by 20%. *The 10+200 condition with 1M LM is after only one

iteration.

2.2. Direct Comparison of Acoustic Models

From Table 1, one could assume that the language model is

the key to high WER Recovery on AM-UT. However one

must differentiate between the LM used for training and the

one used for decoding the test set. Since we performed the

10+200 training condition with all three LMs, we can sepa-

rate the effect of these two different LM uses. Going from

top to the bottom of Table 2, one sees the 1B LM improves

AM-UT by 4% on average. However, its direct impact on de-

coding the test set is 7.5% as can be seen when going from

left to right. The implication is that the quality of the LM

influences absolute WER more than the quality of the unsu-

pervised acoustic model.

Training LM Decoding LM
100k 1M 1B

100k 39.3 37.7 32.5

1M 39.3 37.5 32.3

1B 35.0 33.0 29.0

Baseline 10hrs 43.9 41.8 36.4

Table 2. Direct Comparison of Acoustic Models WER on Dev04 with

the effect of the LM separated out. LMs are used to decode the unlabeled

audio for training and also to decode the test set to report WER. The 1B LM

produces a 4% better AM, but decreases WEr by 7.5% from the 100k LM.

3. UNSUPERVISED LANGUAGE MODEL TRAINING

The fundamental mechanism for unsupervised training is that

an external source corrects errors the initial model might

make, thus increasing the quality of the automatic transcrip-

tions and estimated acoustic models. AM-UT uses the lan-
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guage model and the phonetic dictionary as this external

source to directly compensate for errors made by the AM. In

contrast, LM-UT uses the existing AM (and LM) to generate

new strings of words that never occurred in the training text.

To find the best method of generating these n-gram

counts, we measured the benefit of using word confidences
to threshold or weight n-grams which appear in the ASR out-

put after AM-UT. These come from a general linear model

(GLM) trained to predict the probability of a word being

correct given features from the recognizer [7].

We first trained an LM on all of the automatic transcripts

without weighting. This is the simplest method to learn new

n-grams and improve the initial LM. We used the unsuper-

vised AM trained with the baseline 100k LM to decode 2000

hours and build an LM from the counts. This resulted in an

improvement over the 100k LM from 36.7% to 35.2%. In

a second experiment, we trained on all n-grams present in

the decoding lattices using expected counts and we saw no

significant improvement over the 100k LM. The fact that the

large number of incorrect n-grams in the lattice overwhelms

the correct n-grams is the probable cause of this degradation

in WER. Extracting these correct n-grams from the lattices is

too challenging and so we focus on improving one best esti-

mates.

3.1. Combining Word Confidences

Since rejecting unlikely utterances for acoustic model train-

ing increased performance, we explored similar methods for

LM-UT, this time thresholding on n-grams instead of utter-

ances. Specifically, we rejected n-gram observations from

the decoded 2000 hours with an estimated confidence below

some threshold. Also, we weighted the n-gram counts by the

estimated confidence. We used the product of the constituent

word confidences to compute the confidence of n-grams, lead-

ing to a reduction in perplexity on our test set from 209 (for

the baseline 100k LM) to 1441. This nicely matches our in-

tuition that the probability of an n-gram being correct is the

probability of the constituent words being correct.

Our first experiment used a 200 hour subset from the 2000

hour unlabeled set so that we could experiment with many

different conditions, giving us insight into confidence thresh-

olding. Table 3 shows WER on our test set using estimated

n-gram counts. These counts for each LM were either se-

lected randomly and without weighting, or thresholded and

weighted by confidence. Going from the top to the bottom

of Table 3, WER decreases, which suggests that confidence

selection does not give any benefit. As we compare columns

two and three, weighting n-grams by their confidences im-

proves WER by 0.3% to 1.1% over the baseline 100k LM.

However, as can be seen from the fourth column, this is only

1Other simple combination methods, such as averaging, were signifi-

cantly worse.

N-gram Selection Method
% Selected Random Weighted Trans

0 44.2 44.2 44.2

10 44.6 44.2 41.1

25 44.0 43.7 38.7

50 43.5 43.7 38.7

75 43.6 43.2 38.3

100 43.4 43.1 37.5

Table 3. WER for Unsupervised LM Techniques - Text chosen from

200 hours of one best hypotheses using 100k LM and unadapted 10hr AM.

There is no benefit to selection, either randomly choosing n-grams or ranking

and weighting by the product of word confidences. Confidence weighting

improves over unweighted counts by from 0.8% to 1.1% absolute from the

baseline. Yet only an additional 10% of manual transcripts is more powerful

than counting all weighted n-grams.

16% of the supervised 6.7% gain for training on manual tran-

scripts, leaving plenty of room for improvement.

Since the previous experiment showed that the best strat-

egy is to select all data and weight counts by the confidence,

we repeated this experiment with four larger acoustic condi-

tions. Table 4 shows the results. The four acoustic models

were trained with AM-UT using the baseline LMs. Since

we have manual transcripts for the unsupervised set, we can

select only those n-grams from the decoded transcripts which

are actually correct, giving us an upper bound on n-gram

selection, simulating perfect confidences. As with acoustic

modeling, WER Recovery increases as we train on more un-

labeled audio. LM-UT decreases WER by up to 2% with

2000 hours, but only recovers half the gain from oracle se-

lection. Furthermore, oracle selection recovers at most 53%

of the supervised gain when training on manual transcripts.

While a 2% reduction in absolute WER is meaningful, the

recovery of LM-UT is much less than AM-UT.

LM Audio Base Unsup Oracle Sup Rec

100k
10+200 39.3 38.5 37.3 33.9 15%

10+2000 36.7 34.7 32.8 29.2 26%

1M
10+200 37.5 36.8 36.2 33.3 17%

1+2000 35.2 33.3 32.0 29.2 32%

Table 4. Unsupervised Language Modeling across Different Acoustic
Conditions - We report WER on Dev04. Two different LMs (column 1)

were used to decode the unlabeled audio, using acoustic models after AM-

UT (column 2). The baseline WERs (column 3) were reduced by 0.5%-2.0%

after LM-UT (column 4). However, the oracle WERs (column 5) is still far

off from the supervised WERs (column 6) when using manual transcripts.

WER Recoveries (column 7) are much less than AM-UT. (50%-80%)

3.2. Oracle Selection

The previous oracle results in Table 4 correspond to perfect

selection - correctly recognized n-grams were selected and all
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others rejected. In Table 5, we applied a different strategy re-

flecting accurate confidence estimation where an n-gram has

a weight equal to its accuracy. E.g., a trigram with only two

words correct was assigned a weight of 0.67. We thresholded

n-grams according to their true accuracy and then weighted

the counts (column two). We also weighted the selected n-

grams by the estimated confidence (column three). While

confidences correctly discount unlikely n-grams when all data

are accepted, they slightly hinder performance as the average

n-gram accuracy increases. Our confidence system cannot ac-

curately distinguish correct n-grams, so weighting provides

the best compromise.

Weighting Method
Threshold Accuracy Confidence

Base 36.7 36.7

0 35.2 34.7

0.25 34.6 34.6

0.5 34.1 34.3

0.66 33.7 33.6

0.75 32.9 33.2

1 32.8 33.1

Table 5. Results with Oracle Confidences - WER on Dev04 using oracle

confidence weighting. We extend the oracle confidence selection from Table

4 and select n-grams with accuracy less than one (Column 1). We also replace

the true accuracy weight with the estimated confidence, but still use oracle

selection (Column 2).

3.3. Improved Confidences

The very good performance of oracle selection, compared to

fair confidence estimation, implies that better confidence esti-

mates would result in significant gains. To better distinguish

between correct and incorrect n-grams, we tried adding var-

ious features to our GLM for word confidence estimation.

These included:

• The estimated confidences of the neighboring words.

• The product of many feature pairs (to capture non-

linear effects that the GLM cannot model).

• The estimates of the true posteriors, where a heldout set

was used to tune the estimation.

We used these new confidence features to re-estimate confi-

dences for 2000 hours decoded with the 100k LM and unsu-

pervised AM. This reduced perplexity on Dev04 from 127 to

113, but there was no meaningful reduction in WER. While

word confidences may be independently modeled, word ac-

curacy is not independent of the surrounding words. Instead

of using the product of the constituent words to estimate an

n-gram confidence, we directly modeled n-gram confidences.

Using analogous features from the word confidence system,

including the product of the word confidences, we built sep-

arate GLMs for each n-gram order. This reduced perplexity

further to 112, but again with no WER reduction.

4. DISCUSSION

Unsupervised acoustic modeling is very robust even with a

very weak LM. While recovery degrades by 10% moving

from the 1B to 1M word LM and 20% on average to the 100k

LM, recovery is still near 50%. LM-UT benefits from using

weighted n-grams from ASR output. The absolute improve-

ment from a weak acoustic model on ten hours of training to

two thousand hours supervised is 15% while the comparable

LMs only vary by 8%. Additionally, the relative Recovery

is much less than acoustic modeling - 15%-30% versus 50-

80%. We hypothesize that since n-gram modeling techniques

only memorize the observed data, the LM is unable to aggre-

gate observations and smooth out noise. We could increase

the gain from LM-UT slightly by repeating acoustic model

training and we intend to report our results in a subsequent

publication.
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