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ABSTRACT 
Many speech and language related techniques employ models 
that are trained using text data. In this paper, we introduce a 
novel method for selecting optimized training sets from text 
databases. The coverage of the subset selected for training is 
optimized using hierarchical clustering and the generalized 
Levenshtein distance. The validity of the proposed subset 
optimization technique is verified in a data-driven 
syllabification task. The results clearly indicate that the 
proposed approach meaningfully optimizes the training set, 
which in turn improves the quality of the trained model. 
Compared to the existing state-of-the-art data selection 
technique, the proposed hierarchical clustering approach 
improves the compactness of data clusters, decreases the 
computational complexity and makes data set selection 
scalable. The presented idea can be used in a wide variety of 
language processing applications that require training with text 
data.

 Index Terms— hierarchical clustering, Levenshten 
distance, text data selection

1 INTRODUCTION
Most of the current speech and language processing systems 
contain models that have to be trained with text data. For 
example, in pronunciation modeling, data-driven approaches 
such as neural network based or decision tree based methods 
[4], are often applied, especially for unstructured languages 
such as English. These statistical models are trained using a 
pronunciation dictionary containing grapheme-to-phoneme 
entries. In text-based language identification [6], the model is 
trained using a multilingual text corpus that consists of word 
entries from the target languages. In the data-driven 
syllabification task [5], the model is trained using text-based 
pronunciations and the corresponding syllable structures. 

The text databases used for the training are often built off-
line by collecting all the possible entries from the available 
language resources. The selected data is then used as a 
training corpus for data-driven modeling, or for extracting 
rules. For improving the quality of database, it is common to 
carry out manual corrections that require language-specific 
skills and that are time-consuming and expensive and in 
practice rather error-prone. 

The use of large amounts of training data for model 
training often leads to high memory footprint and 
computational complexity. Because it is likely that the data 
contains unnecessary redundancy, it is rational to remove 
entries that are too similar to some other entry, while still 
achieving a sufficient coverage on the text entries and the 

contexts. Such training set optimization can result in enhanced 
model performance and naturally also offers the possibility to 
use a smaller training set size without sacrificing the 
performance. In practice, the reduced training set size brings 
two significant additional benefits. First, the amount of 
manual annotation work is reduced, which in turn decreases 
the probability of errors and inconsistencies in the 
annotations. Second, the memory consumption and the 
computational load caused by the training process are 
lowered.

Despite the potential benefits, the topic of training set 
selection is, however, often neglected in practice. If a reduced 
data set size is used, the subset is usually obtained by 
collecting a set of random entries from a larger text database 
or by decimating a sorted corpus. These simple methods do 
not optimize the coverage in any way and thus do not 
guarantee good performance. In [7], an objective function was 
defined and optimized to find the data that has the maximum 
distance and subsequently good coverage within the selected 
set. The technique was found to be effective but this solution 
has very high computational complexity. 

In this paper, we present a method that can efficiently 
generate a subset from a text database in such a manner that 
the text coverage is maximized. To achieve this, the 
hierarchical cluster tree technique is applied in the subset 
optimization. The distance is measured using the generalized 
Levenshtein distances between the text strings. The proposed 
algorithm has a low computational complexity compared to 
the maximized objective function method. To demonstrate the 
usefulness of the proposed approach, we evaluate it in the 
data-driven syllabification task. Even though we chose this 
task, it should also be noted that it is fairly easy to the 
proposed method in a wide variety of different applications. In 
essence, the proposed approach could also be used for 
quantizating text data. 

The remaining parts of this paper are organized as 
follows. First, Section 2 describes the distance measure and 
basic principles of the text database optimization algorithms. 
The data-driven syllabification task used in the experiments is 
introduced in Section 3. In Section 4, the performance of the 
proposed approaches is evaluated. Finally, some concluding 
remarks are presented in Section 5. 

2 TEXT DATA OPTIMIZATION 

2.1 Generalized Levenshtein distance 

The generalized Levenshtein distance (GLD) is defined as the 
minimum cost of transforming one string into another by 
means of a sequence of basic transformations: insertion, 
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deletion and substitution [3]. The transformation cost is 
determined by the costs assigned to each basic transformation. 

Let x and y denote strings of length m and n, respectively, 
whose symbols belong to a finite alphabet of size s. Also, let 
xi be the ith symbol of string x, with 1  i  m, and x(i)
denotes the prefix of the string x of length i, i.e. the substring 
containing the first i symbols of x. In addition, let d(i,j) be the 
distance between x(i) and y(j), and ε denotes an empty string. 
Furthermore, we denote by w(a,b), w(a,ε) and w(ε,b) the cost 
of substituting the symbol a with the symbol b, the cost of 
deleting a and the cost of inserting b, respectively. The 
distance d(m,n) is recursively computed based on the 
definitions of d(0,0), d(i,0) and d(0,j) (i = 1…m, j = 1…n),
representing the initial distance, the cost of deleting the prefix 
x(i) and the cost of inserting the prefix y(j), respectively, as 
follows:
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The original Levenshtein distance is characterized by the 
following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is 
equal to b and 1 otherwise. Its generalized version assumes 
that variable costs can be associated to the different 
transformations involving the symbols.  

2.2 Objective function maximization 

In the previously proposed approach [7], an optimized text 
subset is generated by maximizing an objective function. As 
described in Section 2.1, the Levenshtein distance can be used 
for measuring the distance between any pair of entries. 
Similarly, the distance for the whole text data set can be 
calculated by averaging the distances of all the string pairs in 
the set. Suppose that there are m entries in the database and the 
ith entry is denoted by e(i). With these definitions, we can 
compute the overall subset distance D as: 
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where ld(e(i), e(j)) is the GLD between the ith and jth entries. 
The algorithm is proposed to construct the subset by 

recursively selecting the new entry that maximizes the subset 
distance. Assuming that the selected subset has k entries, the 
target is to find the k+1-th entry to the subset. The selection 
that approximately maximizes the amount of new information 
brought into the subset can be done as follows: 
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A new selected entry p is repeatedly added into the subset 
as the k+1-th entry until the predefined subset size is reached. 

2.3 Hierarchical cluster tree 

In this paper, an efficient and scalable clustering based 
scheme is proposed for text database optimization. Since the 
text entries are composed of symbolic strings, it is not feasible 

to apply the conventional clustering methods such as the well-
known K-means algorithm. However, the distance Dij
between entry ith and jth pair can be measured using 
Levenshtein distance as shown in Equation (1-2). Given the 
distances among all possible entry pairs of the given text 
database, the hierarchical clustering algorithm can be applied 
directly on the distance arrays. 

Hierarchical clustering offers a way to investigate 
grouping data, simultaneously over a variety of scales, by 
creating a cluster tree. The tree is not a single set of clusters, 
but rather a multilevel hierarchy where clusters at one level 
are joined as clusters at the next higher level. This allows 
deciding what level or scale of clustering is the most 
appropriate so that the optimal data subset selection is 
scalable and flexible. It also gives the possibility to 
recursively combine with other cluster tree, so that large 
database can be split up to create several trees. The trees can 
then be combined to form the cluster tree with reasonable 
memory and computational requirements. 

Given the defined generalized Levenshtein distance of any 
two entry pairs, the hierarchical clustering algorithm starts 
with all the entries in separate clusters and then repeatedly 
joins the two clusters that are most similar until there is only 
one cluster as shown in Figure 1.  

The history of merging forms a binary hierarchical 
clustering tree. The desired clustering of the entries can be 
obtained by cutting the hierarchical clustering tree at the 
desired level, and then each group of connected entries forms 
a cluster. Among the same-level clusters, it determines the 
two clusters that are the most similar based on the distance or 
similarity measure. The two determined clusters are replaced 
with a single merged cluster. The key step of generating a 
hierarchical clustering tree is repeatedly deciding which pair 
of clusters needs to be merged. As described above, the 
similarities between all the remaining clusters is first 
calculated. Then the two most similar clusters are grouped 
together to form a new cluster.  

There are different types of approaches that can be used 
for measuring the similarity between clusters, for example 

entry 1   entry 2  entry 3 ……  entry i …… entry j …….         entry N

Each node denotes 
the clusters.

Level: hierarchical 
tree controlling 
pruning rate. 

temp 3

temp 1

temp 2

……

Figure 1. Hierarchical clustering tree 
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single, complete and average group linkage. In this paper, the 
average linkage tends to join clusters with small and similar 
variances because it considers all the members in the cluster 
rather than just a single member as single and complete 
linkages. The distance between two clusters is the average 
distance between all the pairs as shown in Figure 2. 
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Finally, the cluster centroid that has the minimum total 
distance to all other entries within cluster is determined. The 
optimal subset is formed by all the cluster centroids. 

3 DATA-DRIVEN SYLLABIFICATION  
The development of speech synthesizers and speech 
recognizers often requires working with sub-word units such 
as syllables. We have earlier described a neural network based 
approach for the automatic assignment of syllable boundaries 
in [5]. In this paper, we revisit the topic and use this 
syllabification task for verifying the usefulness of the proposed 
text data selection approach.  

Syllable is a basic unit of word studied on both the 
phonetic and phonological levels of analysis [2]. The syllable 
information can be described using grammars. The simplest 
grammar is the phoneme grammar, where a syllable is tagged 
with the corresponding phoneme sequence. The syllable 
structure grammar, on the other hand, divides a syllable into 
onset, nucleus and coda (ONC). The nucleus is an obligatory 
part that can be either a vowel or a diphthong. The onset is the 
first part of a syllable consisting of consonants and ending at 
the nucleus of the syllable. The part of a syllable that follows 
the nucleus forms the coda. The coda is constructed of 
consonants. The nucleus and the coda are combined to form 
the rhyme of a syllable. A syllable has a rhyme, even if it 
doesn't have a coda. In the syllable structure grammar, the 
consonants are assigned as onset or coda. The syllable 
structure grammar was used in this paper. 

In the automatic syllabification task, the phoneme 
sequences are mapped into their ONC representations. The 
data-driven syllabification model is trained on the mapping 
information. In the decoding phase, given a phoneme 
sequence, the ONC sequence is first generated, and then the 

syllable boundaries are uniquely decided on the ONC 
sequence.

The basic neural network based ONC model presented in 
[5] is a standard multi-layer perceptron (MLP). The input 
phonemes are presented to the MLP network in a sequential 
manner. The network gives estimates of ONC posterior 
probabilities for each presented phoneme. In order to take the 
phoneme context into account, a number of phonemes on each 
side of the phoneme in question are also used as inputs to the 
network. Thus, a window of phonemes is presented to the 
neural network as input. The ONC neural network is a fully 
connected MLP, which uses a hyperbolic tangent sigmoid 
shaped function in the hidden layer and a softmax 
normalization function in the output layer. The softmax 
normalization ensures that the network outputs are in the 
range [0,1] and sum up to unity. 
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In Equation (6), yi and Pi denote the ith output value 
before and after softmax normalization. It has been shown in 
[1] that a neural network with softmax normalization will 
approximate class posterior probabilities when trained for 
one-out-of-N classification and when the network is 
sufficiently complex and trained to a global minimum. The 
ONC neural network is trained using the standard back-
propagation (BP) algorithm augmented by a momentum term. 
Each phoneme with context and the corresponding ONC tag 
of the pronunciation make up one training example. Weights 
are updated in a stochastic on-line fashion.  

The outputs of the ONC neural network approximate the 
ONC posterior probabilities corresponding to the centermost 
phoneme. The ONC sequence of a pronunciation is obtained 
by combining the network outputs for each individual 
phoneme in the pronunciation. Given a pronunciation with its 
phonemic representation, ONC tag of phoneme phi is given by 

{ }),...,|(argmax wiwik
onc

phphoncPonc
k

+−= , (7)

where ),...,|( wiwik phphoncP +−  is the network output 
corresponding to onck given the input phonemes phi-w…phi+w,
and variable w denotes the phoneme window context size, 
respectively. The variable onc takes its values from the set 
[O N C]. 

4 EXPERIMENTS 
A US English dictionary containing 5.4K entries is used for 
the experiments. Each entry of the dictionary includes a word, 
its pronunciation and the corresponding ONC label. The 
pronunciations and their ONC labels are extracted from the 
dictionary to form the training data. A reduced training data set 
is selected from the entire set by using the following methods: 
• Decimation of the sorted dictionary (denoted as 

Decimation); 
• Maximization of the objective function (denoted as 

Maximum Distance); 
• Hierarchical cluster tree approach (denoted as 

Hierarchical); 
The test set is constructed using the rest of data excluding 

the training set. 

Cluster I

Cluster J

Figure 2. Average distance between two clusters in 
hierarchical clustering tree. 

d(xi, xj)
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Figure 3 shows the string accuracy rate on test set vs. 
training data size, achieved using the different data 
optimization methods. The efficiency of the training data 
optimization approach can be studied by evaluating the 
generalization capability. The performance can be improved 
without increasing the size of the training set if the training 
data is well selected. The results clearly show that the 
proposed hierarchical and maximum distance techniques 
outperform the commonly used decimation method. The 
average improvement achieved using the proposed approach 
is 35.4%. The difference of performance between the 
hierarchical and the maximum distance schemes is marginal. 
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Figure 3. ONC accuracy on test set with different training set 
sizes among the three methods, with respect to the percentage 
of the selected subset size vs. whole data size. 
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Figure 4. Compactness of text data clustering with different 
training set sizes among the three methods, with respect to the 
percentage of the selected subset size vs. whole data size. 

The computational complexity of the maximum distance 
approach can be estimated as 
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where N denotes the entire data size, and M = kN stands for 
size of the selected data set. In comparison, the complexity for 
building a hierarchical tree is O(NlogN). Clearly, the 
complexity of the maximum distance scheme is very high 
compared to the hierarchical scheme especially when optimal 
data size M is high. 

As a second part of the experiments, the compactness of 
the clustered data was also studied. For the maximum distance 
and the decimation schemes, each entry in the selected set 
represents a cluster centroid. Suppose we have selected a data 
set SS={ss1, …, ssM}, extracted from the data set S={s1, …, 
sN}. For the ith entry in data set, its cluster is determined by 
searching the nearest centroid from the selected set. 
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Since all the data is clustered, the compactness can be 
calculated as the average intra-cluster distance across all the 
clusters. It represents the clustering/quantization error in such 
a manner that a low distance means a low clustering error. 

Figure 4 illustrates the compactness with different training 
sizes, using the different data optimization methods. It is easy 
to see that the hierarchical scheme has more compact clusters 
than the maximum distance scheme. The decimation scheme 
has the largest clustering error. Thus, these results indicate 
that the proposed hierarchical method can cluster data with 
the highest accuracy, i.e. the selected data has better coverage 
and less error. Naturally, this explains the better performance 
achievable using data selection. 

5 CONCLUSIONS 
Text data selection for model training is a crucial, but often 
neglected, step in the development of speech and language 
processing systems. In this paper, we have proposed a new 
data selection approach based on hierarchical clustering. We 
have compared the proposed technique with the commonly 
used simple decimation and the previously developed 
maximum distance methods in terms of generalization 
capability, computational complexity and text data clustering 
error. Our experimental results obtained in the data-driven 
syllabification task show that the proposed approach is a very 
promising technique that makes it possible to carry out subset 
selection with good coverage, reduced complexity, low 
memory footprint, low clustering error and scalable using 
different levels of the hierarchical tree. The presented idea can 
be utilized in several applications that require training with 
text data, especially suitable for resources constraint 
embedded platforms, such as mobile devices. 
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