
OPTIMIZATION OF TEXT DATABASE USING HIERACHICAL CLUSTERING

Jilei Tian1 and Jani Nurminen2

1Media Laboratory, Nokia Research Center, Tampere, Finland
2Nokia, Devices R&D, Tampere, Finland

{jilei.tian, jani.k.nurminen}@nokia.com

ABSTRACT
Many speech and language related techniques employ models
that are trained using text data. In this paper, we introduce a
novel method for selecting optimized training sets from text
databases. The coverage of the subset selected for training is
optimized using hierarchical clustering and the generalized
Levenshtein distance. The validity of the proposed subset
optimization technique is verified in a data-driven
syllabification task. The results clearly indicate that the
proposed approach meaningfully optimizes the training set,
which in turn improves the quality of the trained model.
Compared to the existing state-of-the-art data selection
technique, the proposed hierarchical clustering approach
improves the compactness of data clusters, decreases the
computational complexity and makes data set selection
scalable. The presented idea can be used in a wide variety of
language processing applications that require training with text
data.

 Index Terms— hierarchical clustering, Levenshten
distance, text data selection

1 INTRODUCTION
Most of the current speech and language processing systems
contain models that have to be trained with text data. For
example, in pronunciation modeling, data-driven approaches
such as neural network based or decision tree based methods
[4], are often applied, especially for unstructured languages
such as English. These statistical models are trained using a
pronunciation dictionary containing grapheme-to-phoneme
entries. In text-based language identification [6], the model is
trained using a multilingual text corpus that consists of word
entries from the target languages. In the data-driven
syllabification task [5], the model is trained using text-based
pronunciations and the corresponding syllable structures.

The text databases used for the training are often built off-
line by collecting all the possible entries from the available
language resources. The selected data is then used as a
training corpus for data-driven modeling, or for extracting
rules. For improving the quality of database, it is common to
carry out manual corrections that require language-specific
skills and that are time-consuming and expensive and in
practice rather error-prone.

The use of large amounts of training data for model
training often leads to high memory footprint and
computational complexity. Because it is likely that the data
contains unnecessary redundancy, it is rational to remove
entries that are too similar to some other entry, while still
achieving a sufficient coverage on the text entries and the

contexts. Such training set optimization can result in enhanced
model performance and naturally also offers the possibility to
use a smaller training set size without sacrificing the
performance. In practice, the reduced training set size brings
two significant additional benefits. First, the amount of
manual annotation work is reduced, which in turn decreases
the probability of errors and inconsistencies in the
annotations. Second, the memory consumption and the
computational load caused by the training process are
lowered.

Despite the potential benefits, the topic of training set
selection is, however, often neglected in practice. If a reduced
data set size is used, the subset is usually obtained by
collecting a set of random entries from a larger text database
or by decimating a sorted corpus. These simple methods do
not optimize the coverage in any way and thus do not
guarantee good performance. In [7], an objective function was
defined and optimized to find the data that has the maximum
distance and subsequently good coverage within the selected
set. The technique was found to be effective but this solution
has very high computational complexity.

In this paper, we present a method that can efficiently
generate a subset from a text database in such a manner that
the text coverage is maximized. To achieve this, the
hierarchical cluster tree technique is applied in the subset
optimization. The distance is measured using the generalized
Levenshtein distances between the text strings. The proposed
algorithm has a low computational complexity compared to
the maximized objective function method. To demonstrate the
usefulness of the proposed approach, we evaluate it in the
data-driven syllabification task. Even though we chose this
task, it should also be noted that it is fairly easy to the
proposed method in a wide variety of different applications. In
essence, the proposed approach could also be used for
quantizating text data.

The remaining parts of this paper are organized as
follows. First, Section 2 describes the distance measure and
basic principles of the text database optimization algorithms.
The data-driven syllabification task used in the experiments is
introduced in Section 3. In Section 4, the performance of the
proposed approaches is evaluated. Finally, some concluding
remarks are presented in Section 5.

2 TEXT DATA OPTIMIZATION

2.1 Generalized Levenshtein distance

The generalized Levenshtein distance (GLD) is defined as the
minimum cost of transforming one string into another by
means of a sequence of basic transformations: insertion,

4269978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

deletion and substitution [3]. The transformation cost is
determined by the costs assigned to each basic transformation.

Let x and y denote strings of length m and n, respectively,
whose symbols belong to a finite alphabet of size s. Also, let
xi be the ith symbol of string x, with 1 i m, and x(i)
denotes the prefix of the string x of length i, i.e. the substring
containing the first i symbols of x. In addition, let d(i,j) be the
distance between x(i) and y(j), and ε denotes an empty string.
Furthermore, we denote by w(a,b), w(a,ε) and w(ε,b) the cost
of substituting the symbol a with the symbol b, the cost of
deleting a and the cost of inserting b, respectively. The
distance d(m,n) is recursively computed based on the
definitions of d(0,0), d(i,0) and d(0,j) (i = 1…m, j = 1…n),
representing the initial distance, the cost of deleting the prefix
x(i) and the cost of inserting the prefix y(j), respectively, as
follows:

njywjdjd

mixwidid

d

j

i

...,1),()1,0(),0(
...,1),()0,1()0,(

0)0,0(

=∀+−=
=∀+−=

=

ε
ε (1)

+−−

+−
+−

=

),()1,1(
),()1,(
),(),1(

min),(

ji

j

i

yxwjid

ywjid

xwjid

jid ε
ε

 (2)

The original Levenshtein distance is characterized by the
following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is
equal to b and 1 otherwise. Its generalized version assumes
that variable costs can be associated to the different
transformations involving the symbols.

2.2 Objective function maximization

In the previously proposed approach [7], an optimized text
subset is generated by maximizing an objective function. As
described in Section 2.1, the Levenshtein distance can be used
for measuring the distance between any pair of entries.
Similarly, the distance for the whole text data set can be
calculated by averaging the distances of all the string pairs in
the set. Suppose that there are m entries in the database and the
ith entry is denoted by e(i). With these definitions, we can
compute the overall subset distance D as:

)1(

))(),((2
1

−⋅

⋅
= = >

mm

jeield
D

m

i

m

ij , (3)

where ld(e(i), e(j)) is the GLD between the ith and jth entries.
The algorithm is proposed to construct the subset by

recursively selecting the new entry that maximizes the subset
distance. Assuming that the selected subset has k entries, the
target is to find the k+1-th entry to the subset. The selection
that approximately maximizes the amount of new information
brought into the subset can be done as follows:

=
≠=≤≤

k

jesubsetiejmi

jesubsetieldp
)(_)(,1)1(

)(_),((argmax . (4)

A new selected entry p is repeatedly added into the subset
as the k+1-th entry until the predefined subset size is reached.

2.3 Hierarchical cluster tree

In this paper, an efficient and scalable clustering based
scheme is proposed for text database optimization. Since the
text entries are composed of symbolic strings, it is not feasible

to apply the conventional clustering methods such as the well-
known K-means algorithm. However, the distance Dij
between entry ith and jth pair can be measured using
Levenshtein distance as shown in Equation (1-2). Given the
distances among all possible entry pairs of the given text
database, the hierarchical clustering algorithm can be applied
directly on the distance arrays.

Hierarchical clustering offers a way to investigate
grouping data, simultaneously over a variety of scales, by
creating a cluster tree. The tree is not a single set of clusters,
but rather a multilevel hierarchy where clusters at one level
are joined as clusters at the next higher level. This allows
deciding what level or scale of clustering is the most
appropriate so that the optimal data subset selection is
scalable and flexible. It also gives the possibility to
recursively combine with other cluster tree, so that large
database can be split up to create several trees. The trees can
then be combined to form the cluster tree with reasonable
memory and computational requirements.

Given the defined generalized Levenshtein distance of any
two entry pairs, the hierarchical clustering algorithm starts
with all the entries in separate clusters and then repeatedly
joins the two clusters that are most similar until there is only
one cluster as shown in Figure 1.

The history of merging forms a binary hierarchical
clustering tree. The desired clustering of the entries can be
obtained by cutting the hierarchical clustering tree at the
desired level, and then each group of connected entries forms
a cluster. Among the same-level clusters, it determines the
two clusters that are the most similar based on the distance or
similarity measure. The two determined clusters are replaced
with a single merged cluster. The key step of generating a
hierarchical clustering tree is repeatedly deciding which pair
of clusters needs to be merged. As described above, the
similarities between all the remaining clusters is first
calculated. Then the two most similar clusters are grouped
together to form a new cluster.

There are different types of approaches that can be used
for measuring the similarity between clusters, for example

entry 1 entry 2 entry 3 …… entry i …… entry j ……. entry N

Each node denotes
the clusters.

Level: hierarchical
tree controlling
pruning rate.

temp 3

temp 1

temp 2

……

Figure 1. Hierarchical clustering tree

4270

single, complete and average group linkage. In this paper, the
average linkage tends to join clusters with small and similar
variances because it considers all the members in the cluster
rather than just a single member as single and complete
linkages. The distance between two clusters is the average
distance between all the pairs as shown in Figure 2.

= =⋅
=

I

i

J

j
ji

JI
IJ xxd

NN
D

1 1
),(1 (5)

Finally, the cluster centroid that has the minimum total
distance to all other entries within cluster is determined. The
optimal subset is formed by all the cluster centroids.

3 DATA-DRIVEN SYLLABIFICATION
The development of speech synthesizers and speech
recognizers often requires working with sub-word units such
as syllables. We have earlier described a neural network based
approach for the automatic assignment of syllable boundaries
in [5]. In this paper, we revisit the topic and use this
syllabification task for verifying the usefulness of the proposed
text data selection approach.

Syllable is a basic unit of word studied on both the
phonetic and phonological levels of analysis [2]. The syllable
information can be described using grammars. The simplest
grammar is the phoneme grammar, where a syllable is tagged
with the corresponding phoneme sequence. The syllable
structure grammar, on the other hand, divides a syllable into
onset, nucleus and coda (ONC). The nucleus is an obligatory
part that can be either a vowel or a diphthong. The onset is the
first part of a syllable consisting of consonants and ending at
the nucleus of the syllable. The part of a syllable that follows
the nucleus forms the coda. The coda is constructed of
consonants. The nucleus and the coda are combined to form
the rhyme of a syllable. A syllable has a rhyme, even if it
doesn't have a coda. In the syllable structure grammar, the
consonants are assigned as onset or coda. The syllable
structure grammar was used in this paper.

In the automatic syllabification task, the phoneme
sequences are mapped into their ONC representations. The
data-driven syllabification model is trained on the mapping
information. In the decoding phase, given a phoneme
sequence, the ONC sequence is first generated, and then the

syllable boundaries are uniquely decided on the ONC
sequence.

The basic neural network based ONC model presented in
[5] is a standard multi-layer perceptron (MLP). The input
phonemes are presented to the MLP network in a sequential
manner. The network gives estimates of ONC posterior
probabilities for each presented phoneme. In order to take the
phoneme context into account, a number of phonemes on each
side of the phoneme in question are also used as inputs to the
network. Thus, a window of phonemes is presented to the
neural network as input. The ONC neural network is a fully
connected MLP, which uses a hyperbolic tangent sigmoid
shaped function in the hidden layer and a softmax
normalization function in the output layer. The softmax
normalization ensures that the network outputs are in the
range [0,1] and sum up to unity.

=

= 3

1j

y

y

i
j

i

e

e
P . (6)

In Equation (6), yi and Pi denote the ith output value
before and after softmax normalization. It has been shown in
[1] that a neural network with softmax normalization will
approximate class posterior probabilities when trained for
one-out-of-N classification and when the network is
sufficiently complex and trained to a global minimum. The
ONC neural network is trained using the standard back-
propagation (BP) algorithm augmented by a momentum term.
Each phoneme with context and the corresponding ONC tag
of the pronunciation make up one training example. Weights
are updated in a stochastic on-line fashion.

The outputs of the ONC neural network approximate the
ONC posterior probabilities corresponding to the centermost
phoneme. The ONC sequence of a pronunciation is obtained
by combining the network outputs for each individual
phoneme in the pronunciation. Given a pronunciation with its
phonemic representation, ONC tag of phoneme phi is given by

{ }),...,|(argmax wiwik
onc

phphoncPonc
k

+−= , (7)

where),...,|(wiwik phphoncP +− is the network output
corresponding to onck given the input phonemes phi-w…phi+w,
and variable w denotes the phoneme window context size,
respectively. The variable onc takes its values from the set
[O N C].

4 EXPERIMENTS
A US English dictionary containing 5.4K entries is used for
the experiments. Each entry of the dictionary includes a word,
its pronunciation and the corresponding ONC label. The
pronunciations and their ONC labels are extracted from the
dictionary to form the training data. A reduced training data set
is selected from the entire set by using the following methods:
• Decimation of the sorted dictionary (denoted as

Decimation);
• Maximization of the objective function (denoted as

Maximum Distance);
• Hierarchical cluster tree approach (denoted as

Hierarchical);
The test set is constructed using the rest of data excluding

the training set.

Cluster I

Cluster J

Figure 2. Average distance between two clusters in
hierarchical clustering tree.

d(xi, xj)

4271

Figure 3 shows the string accuracy rate on test set vs.
training data size, achieved using the different data
optimization methods. The efficiency of the training data
optimization approach can be studied by evaluating the
generalization capability. The performance can be improved
without increasing the size of the training set if the training
data is well selected. The results clearly show that the
proposed hierarchical and maximum distance techniques
outperform the commonly used decimation method. The
average improvement achieved using the proposed approach
is 35.4%. The difference of performance between the
hierarchical and the maximum distance schemes is marginal.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
91

92

93

94

95

96

97

98

99

Data size: trainset vs. whole set

Str
ing

 ra
te

of
sy

lla
bif

ica
tio

n

Performance of syllabification: Hierarchical (solid), Maximum Distance (dotted), Decimation (dashed)

Figure 3. ONC accuracy on test set with different training set
sizes among the three methods, with respect to the percentage
of the selected subset size vs. whole data size.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
2

2.5

3

3.5

4

4.5

5

Data size: trainset vs. whole set

Av
era

ge
 w

ith
in

clu
ste

r d
ist

an
ce

Compactness of clustering: Hierarchical (solid), Maximum Distance (dotted), Decimation (dashed)

Figure 4. Compactness of text data clustering with different
training set sizes among the three methods, with respect to the
percentage of the selected subset size vs. whole data size.

The computational complexity of the maximum distance
approach can be estimated as

()[])(
6

123)1()(3

1
NO

NkkNkN
iiNC

kN

i

∝+⋅−⋅+⋅=⋅−=
=

, (8)

where N denotes the entire data size, and M = kN stands for
size of the selected data set. In comparison, the complexity for
building a hierarchical tree is O(NlogN). Clearly, the
complexity of the maximum distance scheme is very high
compared to the hierarchical scheme especially when optimal
data size M is high.

As a second part of the experiments, the compactness of
the clustered data was also studied. For the maximum distance
and the decimation schemes, each entry in the selected set
represents a cluster centroid. Suppose we have selected a data
set SS={ss1, …, ssM}, extracted from the data set S={s1, …,
sN}. For the ith entry in data set, its cluster is determined by
searching the nearest centroid from the selected set.

)),((minarg
1

ti
Mt

i sssdc
≤≤

= (9)

Since all the data is clustered, the compactness can be
calculated as the average intra-cluster distance across all the
clusters. It represents the clustering/quantization error in such
a manner that a low distance means a low clustering error.

Figure 4 illustrates the compactness with different training
sizes, using the different data optimization methods. It is easy
to see that the hierarchical scheme has more compact clusters
than the maximum distance scheme. The decimation scheme
has the largest clustering error. Thus, these results indicate
that the proposed hierarchical method can cluster data with
the highest accuracy, i.e. the selected data has better coverage
and less error. Naturally, this explains the better performance
achievable using data selection.

5 CONCLUSIONS
Text data selection for model training is a crucial, but often
neglected, step in the development of speech and language
processing systems. In this paper, we have proposed a new
data selection approach based on hierarchical clustering. We
have compared the proposed technique with the commonly
used simple decimation and the previously developed
maximum distance methods in terms of generalization
capability, computational complexity and text data clustering
error. Our experimental results obtained in the data-driven
syllabification task show that the proposed approach is a very
promising technique that makes it possible to carry out subset
selection with good coverage, reduced complexity, low
memory footprint, low clustering error and scalable using
different levels of the hierarchical tree. The presented idea can
be utilized in several applications that require training with
text data, especially suitable for resources constraint
embedded platforms, such as mobile devices.

6 ACKNOWLEDGEMENTS
This work was partly supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement 213845 (EMIME project).

7 REFERENCES
[1] C. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.
[2] D. Kahn, Syllable-Based Generalizations in English

Phonology, Doctoral Dissertation, Massachusetts Institute
of Technology, USA, 1976.

[3] E. Ristad and P. Yianilos, “Learning String Edit
Distance”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol.20, pp.522-532, May, 1998.

[4] J. Suontausta, and J. Häkkinen, ”Decision Tree Based
Text-to-Phoneme Mapping for Speech Recognition,” In
Proceedings of 6th ICSLP, Beijing, China, 2000.

[5] J. Tian, “Data-Driven Approaches for Automatic
Detection of Syllable Boundaries”, in Proceedings of 8th
ICSLP, Jeju Islands, Korea, 2004.

[6] J. Tian, J. Häkkinen, S. Riis, and K. Jensen, “On Text-
Based Language Identification for Multilingual Speech
Recognition Systems, In Proceedings of 7th ICSLP,
Denver, USA, 2002.

[7] J. Tian, J. J. Nurminen, and I. Kiss, “Optimal Subset
Selection From Test Databases”, In Proceedings of
ICASSP, Philadelphia, USA, 2005.

4272

