
NEW STRATEGIES FOR PRONUNCIATION BY ANALOGY

Tatyana Polyákova, Antonio Bonafonte

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

ABSTRACT

The synthesis quality is influenced by many important factors,
among which the correctness of the grapheme-to-phoneme (g2p)
conversion is one of the crucial ones. Automatic letter-to-sound
systems have been in the center of attention for the last decade.
One of the most effective and promising methods resulted to be the
so-called “pronunciation by analogy” method [8], based on the
analogy in the grapheme context, allowing derivation of the correct
pronunciation for a new word from the parts of similar words
present in the dictionary. This paper aims at further development of
this method. Novel scoring strategies for determining the best
pronunciations were proposed. A word error rate reduction of 1.5-
2.5 percent is obtained. A detailed analysis shows that one of the
new strategies consistently outperforms the others. The results
obtained are compared to other g2p methods using the same data.

Index Terms—Speech synthesis, grapheme-to-phoneme,
pronunciation by analogy.

1. INTRODUCTION

The derivation of the pronunciation in English language given a
letter string is a hard task for non-native speakers and it is even
truer for automatic systems that are usually based on statistics. The
human brain handles statistics in a different way; humans use
analogy to memorize how to pronounce words or word fragments
in English and other languages with deep orthography. When
trying to read something, it takes time and extra effort to apply the
pronunciation rules of the language, while the analogy matching
that our brain performs is thunder fast. Either we say it or not
correctly depend on the number of words with similar
pronunciation rules that we have learned before. This is where the
computer has a great advantage compared to, for example, English
learners. For the computer, grasping all the examples from the
dictionary and applying statistics-based analogy to derive
pronunciation for the new words is a question of milliseconds. The
pronunciation by analogy is an interesting technique similar to
language learning that was successfully applied to derive
pronunciation of out-of-vocabulary words [3, 8, 11]. One of the
goals of this work was to compare the pronunciation-by-analogy
system reported by Marchand and Damper [8] to other g2p
methods reported in [9]. The possibilities of further improvement
of the system’s performance were explored by introducing new
scoring strategies for choosing the best pronunciation.

2. PRONUNCIATION BY ANALOGY SYSTEM
DESCRIPTION

For the first time, pronunciation-by-analogy (PbA) was proposed
for reading studies by Glushko in 1979 [6] and later in 1986

Dedina and Nusbaum [3] introduced the use of this method to TTS
applications. The latest and most successful implementation of the
algorithm was published by Marchand and Damper [8] which we
have reimplemented for our experiments. The system as well as the
initial one, called PRONOUNCE [3] consists of four major
components.

- Aligned lexicon (in one-to-one manner)
- Word matcher
- Pronunciation lattice (a graph that represents all possible

pronunciations)
- Decision maker (chooses the best candidate among all

present in the lattice)
Below we review the entire algorithm since it is necessary for
understanding of the new strategies and introduction of new
terminology.

In order to search for analogy between words that share
similar substrings, in the first place it is necessary to make sure that
there is a one-to-one match between the orthographic and phonetic
strings, or, in other words, each letter has to be aligned to its
corresponding phonetic representation. Finding the correct
alignment is a challenge since the orthographic and phonetic
representations of a word in English do not always have the same
length. Due to its rather complex orthography, in English words
there are usually more letters than sounds. In this case a null phone
/_/ is inserted into the phoneme string, ex. #thing# /# T _ i N _ #/,
otherwise, if the number of phonemes is greater than that of letters,
the phonemes corresponding to the same letter are joint together in
one, e.g. fox /f A k_s/. The alignment is based on EM algorithm,
and it is similar to that described in [2]. The alignment given by the
system is not always the correct one and it can influence negatively
on the results.

After the dictionary has been aligned, the matcher, one of the
most important components of the system, starts to search for
common substrings between the input word and the rest of the
dictionary entries. Every input word is then compared to all the
words in the lexicon in order to find common “arcs”. Let us call
the substrings in the grapheme context “letter arcs” and the
corresponding substring in the phoneme context “phoneme arcs”.
All the possible letter arcs with the minimum length of 2 letters
and the maximum length equal to the input word length are
generated and then searched in the dictionary. For every letter arc
from the input word, matching with the same letter arc from a
dictionary word, the corresponding pronunciation or the phoneme
arc is extracted. The frequency of appearance of each phoneme arc
corresponding to the same letter arc is stored along with the start
position is for each arc. As an example, let us say that the word top
is absent from our dictionary; the list of all possible letter arcs for
this word can be given as “#t, #to, #top, to, top, top#, op, op#, p#”.
Now let us suppose that in the lexicon we have the word
“#topping#” with the pronunciation /# t A p _ I _ N #/, here the
matcher finds the letter arcs #t, #to, #top, and op, with their
corresponding phoneme arcs /# t/, /# t A/, /# t A p/, /A p/. Each

4261978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

time that for the same letter arc we find the same phoneme arc; the
frequency of the phoneme arc is incremented. The matching
phoneme arcs are entered into the pronunciation lattice that can be
represented by nodes and connecting arcs. If an arc starts at a
position i and ends at a position j, and if there is yet no arc starting
or ending at position i, the nodes Li and Lj are added to the graph.
An arc is drawn between them. All the nodes are labeled with the
corresponding “juncture” phoneme and its position in the word.
The arcs are labeled with the remaining phonemes and their
frequency of appearance. An example of the lattice construction
for the word top using the arcs found in the word topping is
illustrated in Figure 1. All the arc frequencies are assumed to be
equal to 1. Each complete path through the lattice is called
“pronunciation candidate”. We considered only the shortest paths
through the lattice [8]. If there is a unique shortest path, it is chosen
as the best pronunciation and the algorithm stops. Usually there are
several shortest paths through the lattice, and a decision function is
necessary to choose the best pronunciation candidate among them.

Fig. 1. Lattice construction for the word” top”.

Each candidate can be represented as Cj={Fj,Dj,Pj}, where
Fj = {F1,…,Fn} are the phoneme arc frequencies along the jth path,
Dj = {d1,…,dn} are the arc lengths and Pj = {p1,…,pl} are the
phonemes comprising the pronunciation candidate, being l the
pronunciation length. Marchand and Damper in 2000 [8] proposed
to use 5 scoring strategies in order to choose the best
pronunciation. In the same work two ways of strategy combination
were introduced. Each strategy gives us a score for each candidate
and based on its score each candidate is assigned a rank. According
to the rank, each candidate is awarded points. If a strategy gives
the same score for several candidates, they are given the same rank
and the same number of points. There are two manners of
determining the winner candidate; the first one is the sum rule,
which chooses the candidate that has the largest value of the sum
of points for all of the included strategies. The product rule
chooses the candidate with the largest value of product of the
points awarded by each of the included strategies. For NETtalk
dictionary the best accuracy obtained was equal to 65.5% for
words and 92.4% for phonemes, using all five strategies [8]. The
sum and the product rule seemed to give the similar results.

3. MULTI-STRATEGY APPROACH

The original 5 strategies [8] are:

1. Maximum arc frequency product (PF)
2. Minimum standard deviation of arc lengths (SDPS)
3. Highest same pronunciation frequency (FSP)
4. Minimum number of different symbols (NDS)

5. Weakest arc frequency (WL)

The proposed strategies are:

6. Weighted arc product frequency (WPF)
Similar to 1st strategy described in [8], where for each arc the
corresponding arc frequencies are multiplied ������ � 	
��

�
� , n
being the candidate length, or the number of arc of which the
candidate consists. Rank 1 is given to the candidate scoring the
maximum PF(). The difference is that in this strategy for each
phoneme arc, Ak the frequency of its appearance is divided by k,
the number of different phoneme arcs found in the dictionary for
the corresponding letter arc, Li. For example if our unknown word,
is #infinity# and if in the pronunciation lattice we have a path that
starts with a letter arc, L1= “# in” and a corresponding phoneme arc
A1=/# @ N/, whose frequency is equal to 12, in order to obtain the
weighted arc frequency, we have to divide 12 by the number of
different phoneme arcs available in the dictionary for the letter arc
“#in”.

7. Strongest first arc (SF)
This strategy aims at capturing the analogy in prefixes. The
candidate with the highest frequency score for the first arc is given
rank 1.

8. Strongest last arc (SL)
This strategy is analogous to the previous one but for the suffixes.
The candidate with the highest frequency score for the last arc is
given rank 1.

9. Strongest longest arc (SLN)
The candidate who has at the same time the longest and the most
frequent arc is given rank1. First the longest arc is chosen and if
there is a tie the next step is to choose the most frequent one. The
candidate that have the longest and arcs seem to be more reliable,
and of course, the more frequent the arc is the stronger is the
analogy.

10. Same symbols multiplied by arc frequency (SSPF)
The 10th strategy is similar to the fourth one (NDS). NDS gives
preference to the candidates whose phonemes appear in the
majority of other candidates. ������� � � � ������� ������

�
�
�
�
� ,

being l is the number of phonemes in a pronunciation, δ the
Kroneker delta, equal to 1 if �� � �� and 0 otherwise, and N the
number of candidates. In our strategy when counting the common
phonemes, we also take into consideration the phoneme arc
frequencies. For every candidate the pronunciation is. If a
candidate has a common phoneme with other candidates, we give it
a higher score, depending also on the number of times the
phoneme arc containing that phoneme appears in the dictionary
�������� � � � �� � ������� ������ �
��� �!

�
�
�

�
�
� .

11. Product frequency, same pronunciation (PFSP)
This strategy is a combination of 1st and 3rd strategies [8]. The 3rd

strategy gives the privilege to the candidates sharing the same
pronunciation with the others, rank 1 is given to the candidate
scoring the maximum FSP().
������� � "#$%&��'�� � ��(�)))* � +)#$%)+�),�� �-
In eleventh strategy all the candidates that share the same
pronunciation obtain the same score equal to the combination of

4262

the scores assigned to each one of the candidates by the 1st strategy
�������� � � .�� ��!

/)
�)��01234

.

4. EXPERIMENTAL RESULTS

The experiments were performed on two dictionaries, NETtalk and
LC-STAR, used by the authors in previous experiments [8, 9].
The NETtalk has 20K of words, and it was manually aligned by
Sejnowski and Rosenberg [13]. LC-STAR is a public dictionary of
U.S. English, created in the framework of LC-STAR project [7];
we have used only the common words (about 50 K). No
homonyms were considered for the experiments. As usual, 90
percent of the lexica were used for training and 10 for test. The
first thing to do was to find out how each strategy performed. The
strategy mask is a binary string, where one means the strategy is
included in the final result and 0 otherwise. The results for eleven
strategies for both dictionaries are given in Table 1.

Strategy mask/
Dict

NETtalk LC-STAR

Ph. acc. W. acc. Ph. acc. W.acc.

10000000000 89.70% 57.48% 94.76% 73.59%

01000000000 88.00% 50.59% 92.68% 65.31%

00100000000 89.95% 59.06% 95.60% 79.34%

00010000000 90.27% 57.43% 95.53% 76.73%

00001000000 88.56% 53.75% 94.07% 71.44%

00000100000 89.69% 57.02% 94.96% 75.05%

00000010000 89.15% 55.84% 92.95% 66.17%

00000001000 87.92% 50.28% 94.46% 72.26%

00000000100 88.68% 54.01% 92.82% 65.23%

00000000010 89.99% 58.30% 94.95% 74.61%

00000000001 91.14% 62.94% 96.01% 80.32%

Table 1. Word and phoneme accuracy for each strategy for
NETtalk and LC-STAR dictionaries.

From the results above we can see that the strategies give different
performance for different dictionaries. The best strategy is the
proposed eleventh strategy and the second best is the original 3rd

strategy for both dictionaries. For NETtalk dictionary, two
proposed and three original strategies made it to the top 5 strategy
list while for LC-STAR dictionary the top 5 strategies included
three proposed and two original ones.

In the next step we evaluated all possible strategy
combinations. For our implementation of the 5 original strategies
the best results were obtained for the combination of 1st and 3rd

strategies “10100”. The accuracy obtained for NETtalk lexicon
was 63.04% words and 91.02% phonemes correct; and 80.94%
words and 96.07% phonemes correct for LC-STAR lexicon. These
results are slightly different from those reported in [8], as well as
the scores obtained for each original strategy with our system, but
we believe that it is due to the implementation nuances. The top 5
combination results including the proposed strategies are given in
Tables 2 and 3.
Eleventh strategy is present throughout Tables 2 and 3 and its
contribution to the improvement of overall score is the greatest for

both lexicons. The best strategy combination results obtained are
higher than those previously obtained combining only the original
strategies. The word error rate decreased from 36.96% to 36.5%
for NETtalk and for LC-STAR from 19.06% to 18.78%. That is
between 1.5 and 2.5 percent of error decrease.

S. combination Ph. acc. W. acc.

11110010011 91.28% 63.50%
01110110011 91.24% 63.40%

01100010001 91.30% 63.40%

01100010011 91.29% 63.35%

00100010001 91.31% 63.35%

Table 2. Top 5 strategy combination results for NETtalk
dictionary.

S. combination Ph. acc. W.acc.

00101000001 96.13% 81.22%
01100001001 96.08% 81.12%

01111100001 96.11% 81.04%

01101001001 96.04% 81.04%

00101001001 96.09% 81.04%

Table 3. Top 5 strategy combination results for LC-STAR
dictionary.

The hypothesis is that the performance of the PbA algorithm
is different for short and for long words. For this purpose the test
dictionary was split into several dictionaries containing words of
the same length. The lengths ranged from 3 to 17 letters per word.
The words that had only two letters were added to the dictionary of
3-letter words. For the LC-STAR dictionary the distribution of
words by length is a Gaussian with its mean situated approximately
at the length 8. It is true for both training and test dictionaries.

As we expected, the performance of each strategy depends
on the length of the word. This could be used to select a strategy.
However, the new strategy 11 has happened to be the best in all the
cases. When looking at word accuracy, in the great majority of the
cases the eleventh strategy is the best. For word lengths equal to 6
and 7 letters the word accuracy is the highest. The strategies
strongly disagree on very short and very long words. Word
accuracy is higher for shorter words, since there are less phonemes
and the probability of having at least one phoneme wrong is lower.
For phoneme accuracy, the eleventh strategy gives the best results.
The phoneme accuracy is high starting with 5 letter words and
remains this way even for very long words, but like in the word
accuracy case the strategies disagree for very short and very long
words. The best phoneme accuracy results very obtained for the
words consisting of 14 letters using the eleventh strategy.
 Finally, Table 4 compares the results obtained with the PbA
algorithm to the ones previously obtained in [9]. This comparison
allows us concluding that PbA is one of the best g2p methods up to
now.

4263

Classifiers baseline
DT 67.47%
FST 79.38%
HMM 47.54%
PbA 81.22%

Table 4. Word accuracy for different g2p methods.

The results above were obtained for the LC-STAR dictionary using
decision trees (DT) [1], finite state transducers (FST) [5] and
hidden Markov models (HMM) [10] and PbA [8] classifiers.

Fig.2. Word accuracy for each strategy and word length.

Fig.3. Phoneme accuracy for each strategy and word
length.

5. CONCLUSIONS

For the pronunciation by analogy method new scoring strategies
were proposed and improvements were obtained based on these
strategies. The 1.5-2.5% of error reduction was reached in
comparison with the strategies used in [8]. The proposed eleventh
strategy was found to be the best one, as it can be seen from the
results shown in Table 1 where it performs better than the other
strategies on both dictionaries, as well as from Tables 2 and 3
where it participates in all top 5 strategy combinations. The
difference between strategy combination results with or without

the eleventh strategy is less significant than the difference between
the accuracy obtained for the eleventh strategy and the rest of the
strategies. The performance of each strategy on words of different
length was analyzed; Figures 2 and 3 show that for all word
lengths the eleventh strategy performs best both for words and
phonemes.

6. ACKNOWLEDGEMENTS

This work was sponsored by the Spanish Ministry of Education
(AP2005-4526) and AVIVAVOZ project.

7. REFERENCES

[1] Black A.W., Lenzo K. and Pagel V., “Issues in building general
letter to sound rules”, In Proceedings of the Third ESCA workshop
on speech synthesis, Jenolah Caves, W-S W, Australia, pp. 77-80,
1998

[2] Damper R. I., Marchand Y., Marsterns J.-D. and Bazin A.,
“Aligning letters and phonemes for speech synthesis” in
Proceedings of the 5thISCA Speech Syntesis Workshop, Pittsburgh,
pp. 209-214, 2004

[3] Dedina, M. and Nusbaum, H. “Pronounce: a program for
pronunciation by analogy”, Computer Speech and Language,
Prentice-Hall, London, UK., vol .5, pp 55—64, 1991

[4] ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/

[5] Galescu L., J. Allen, “Bi-directional Conversion Between
Graphemes and Phonemes Using a Joint N-gram Model”, In Proc.
of the 4th ISCA Tutorial and Research Workshop on Speech
Synthesis, Perthshire, Scotland, 2001

[6] Glushko, R. J., “Principles for Pronouncing print: The
psychology of phonography. Lesgold and Perfetti“, pp. 61—84,
Lawrence Erlbaum, Hillsdale, NJ, 1981

[7] http://www.lcstar.org

[8] Marchand, Y. and Damper R.I. “A multi-strategy approach to
improving pronunciation by analogy”, Computational Linguistics
26(2), pp. 195-219, 2000

[9] Polyakova T., Bonafonte A., "Learning from errors in
grapheme-to-phoneme conversion", International Conference on
Spoken Language Processing, pp.1149-1152, Pittsburgh, USA,
2006.

[10] Taylor P., “Hidden Markov Models for grapheme to phoneme
conversion”, In Proc. of Interspeech 2005, Lisbon, Portugal, pp.
1973-1976, 2005

[11] Yvon, F., "Grapheme-to-phoneme conversion using multiple
unbounded overlapping chunks", In Proc. NeMLaP’96, pp. 218-
228, 1996

2 4 6 8 10 12 14 16 18
15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

W
 %

Length

 W1
 W2
 W3
 W4
 W5
 W6
 W7
 W8
 W9
 W10
 W11

2 4 6 8 10 12 14 16 18
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

P
%

Length

 Ph1
 Ph2
 Ph3
 Ph4
 Ph5
 Ph6
 Ph7
 Ph8
 Ph9
 Ph10
 Ph11

4264

