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ABSTRACT

We propose an approach to modeling Chinese tonal patterns,
focusing on the basic fundamental frequency (F0) patterns
characterized by the contextual linguistic features that can
be directly extracted from text. We analyze tonal patterns as
sparse target points (tonal F0 peaks and valleys) and represent
them in parametric form within the framework of a functional
F0 model. The relationships between the target points and un-
derlying linguistic features are trained using classification and
regression tree analysis (CARTs), and this functional model is
used to trace the F0 trajectories when training the CARTs and
to synthesize a tonal pattern from the target points predicted
by the CARTs. Our experiments indicate that the proposed
method has low F0 prediction errors. Utilization of the F0

ranges measured from training samples could significantly re-
duce the influences of differences in voice ranges on training
a speaker-independent model. Furthermore, the most impor-
tant roles in characterizing tonal patterns were played by a
few linguistic features such as lexical tone context and the
distinction between voiced from unvoiced initials.

Index Terms— Prosodymodeling, machine learning, func-
tional F0 model, speech synthesis, speech processing

1. INTRODUCTION

Chinese has five lexical tones (Tones 0–4), each character-
ized by fundamental frequency (F0) contours that coincide
with the syllables, thus forming tone patterns. The modula-
tion of the tone patterns can import emphasis to some words
and reflect the intonation class of an utterance (statement,
question, affirmations, etc.), thus giving intonation patterns.
In this paper, we follow from the distinction between neu-
tral and expressive intonation in that neutral intonation re-
flects language-assigned information which can be character-
ized by contextual linguistic features and expressive intona-
tion reveals the makeup information that is added by speakers
when uttering. We will use term tonal patterns to denote the
tone patterns modulated by the neutral intonation. As human
listeners make heavy use of the prosodic cues in the under-
standing process, such cues evidently carry considerable use-
ful information in spoken language systems [1]. However,

most systems use prosodic cues in limited, unprincipled ways
because there is no established method to employ them.
In speech synthesis, approaches based on hidden Markov

models (HMM) have been successfully used to model prosody
[2][3]. Furthermore, significant progress has been made in
corpus-based speech synthesis technology [4]. These two de-
velopments have led to improvement in the quality of syn-
thetic speech, which in turn has led to greater commercializa-
tion of this technology [1]. The problem is that for some ap-
plications, reading-style speech is no longer adequate because
it lacks the aspects of communication conveyed by expressive
intonation [5]. We are dealing with the problem by separately
modeling the tonal patterns and expressive intonation using
the functional F0 model in [6][7]. This paper presents our
work on the former (i.e., modeling the tonal patterns); pre-
liminary results on the latter are presented elsewhere [8]. The
rest of this paper is organized into three sections: outline of
the approach, experimental evaluation, and conclusions.

2. OUTLINE OF THE APPROACH

Figure 1 illustrates the characteristics of the proposed method.
Basically, it consists of four components: First, we analyze
the tonal patterns in a set of training samples as sets of sparse
target points and represent the tonal patterns in parametric
form within the framework of the functional F0 model [6] [7].
These target points are then converted to three training pa-
rameters, called m-parameter, t-parameter, and f-parameter,
which will be defined in Sec. 2.2. Second, we train three
classification and regression trees (CARTs), called m-tree, t-
tree, and f-tree, to model the relationships between respec-
tive training parameters and the underlying linguistic features
(described in Sec. 2.2). Third, a set of training parameters are
predicted by the three trees according to the linguistic features
extracted from input text. The predicted training parameters
are further converted to a sequence of target points, given the
phone boundary information. Finally, these target points are
used as model parameters to directly control the functional
F0 model and synthesize a tonal pattern for the input text. By
using this functional F0 model to trace the observed F0 con-
tours (i.e., the tonal patterns used for training the CARTs), the
approach can refine these trees by minimizing the mismatch
between the observed and predicted F0 contours.
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Fig. 1. Characteristics of proposed method for modeling tonal patterns and predicting parameters; m-parameter, t-parameter,
and f-parameter are features representing the number of syllable target points, normalized time, and frequency, respectively.

2.1. Functional F0 model

We use the functional F0 model suggested in [6] [7] to an-
alyze and synthesize the patterns of F0 contours. A model
of the F0 patterns basically consists of tonal and intonation
components, even in a statistical model [3]. In our model, log
F0 are mapped into a two-dimensional space in a structure-
preserving manner. Furthermore, the tonal and intonation
components can separately be represented by an orthogonal
base of the two-dimensional space. In consequence, the ex-
pressive intonation effects on the tonal patterns can be “re-
moved” when training a model in a statistical sense.
Let F0(t), as a function of time t, indicate an F0 con-

tour from F0 range [f0l
(low F0 boundary) and f0h

(high F0

boundary)]; Λ(t), the tonal component of F0(t); andZ(t), the
intonation component. The modulation of Λ(t) through Z(t)
to form F0(t) is expressed as a combination of a resonance
mechanism and a frequency transformation as follows [6]:

lnF0(t) − ln f0l

ln f0h
− ln f0l

=
A(Λ(t), Z(t)) − A(2, Z(t))

A(1, Z(t)) − A(2, Z(t))
, (1)

where A(λ, ζ) indicates the resonance mechanism below.

A(λ, ζ) =
1√

(1 − (1 − 2ζ2)λ)2 + 4ζ2(1 − 2ζ2)λ
.

In physics terms, λ indicates square the frequency ratios of a
forced vibrating system like the vocal cords, and ζ the damp-
ing ratios of the system; ζ2 < 0.5. Specifically, f0l

is forcedly
mapped to 2 in this work and f0h

to 1 by λ in Eq. (1).
When focusing on modeling of the tonal patterns as ad-

dressed in this paper, an observed F0 contour is basically rep-
resented by the tonal component Λ(t) parameterized by λ as
a function of time t (≥ 0), while the intonation component
Z(t) can be fixed to a default value ζ0 [6], namely, Z(t) =
0.156 (an empirical value, after this, denoted by ζ0).

On the other hand, the model follows from an assumption
that an F0 contour can be analyzed as a series of target points
(tonal F0 peaks and valleys). It is assumed that there are n
target points on an F0 contour and they are represented by
their tonal component as (ti, λi), i = 1, ..., n, where ti and
λi indicate the time and λ of the ith target point, respectively.
The connection from the ith target point to the next, denoted
by Λi(t), is approximated by a family of exponential func-
tions [7]. Λ(t) is then expressed as concatenation of all the
connections. In mathematical terms,

Λ(t) =
n∑

i=0

Λi(t, ti, λi, ti+1 − ti,
λi+1 − λi

0.9
, ki), (2)

where the 0th target point (0, λ0) is assumed at λ0 = λ1 and
tn+1 = ∞. The ith connection Λi(t, ti, λi, Δti, Δλi, ki) ={

λi + Δλi[1 − D(t − ti, Δti, ki)], for ti ≤ t < ti+1,
0, otherwise.

where D(t,Δt, k) =
k∑

j=0

[ c(k)t
Δt ]j

j!
e−

c(k)t
Δt , t ≥ 0.

Parameter ki adjusts the configuration of Λi(t) [7]. The k-
dependent coefficient c(k) is determined by solving the fol-
lowing equation:

∑k
j=0

[c(k)]j

j! e−c(k) = 0.1.

The model parameters are summarized as follows.
n: The number of target points used for a tonal pattern
(ti, λi): The ith target point, i = 1, ..., n
f0l
: A low F0 boundary measured from speech samples

f0h
: The high boundary of the measured F0 range above

ki: = 2 fixed at the synthesis phase for simplicity
Z(t): = ζ0 (i.e., 0.156) when mapping f0 to (or from) λ.
Accordingly, the model parameters that need to be trained for
representing the tonal patterns are (ti, λi), i = 1, ..., n.
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2.2. Linguistic features and the training parameters

The feature extraction process consists of both linguistic and
acoustic aspects. We choose syllable as the basic linguistic
unit for the feature extraction because syllables are the car-
riers of lexical tones. A Chinese syllable consists of three
components: initial (21 types), final (36 types), and lexical
tone. We consider the following contextual linguistic features
and then identify the significant features through experiment.

The linguistic features:
• Current syllabic initial (henceforth, denoted by cI).
• Current syllabic final (cF).
• Current syllabic tone (cT).
• Preceding syllabic initial (pI).
• Preceding syllabic final (pF).
• Preceding syllabic tone (pT).
• Pre-preceding syllabic tone (ppT).
• Succeeding syllabic initial (sI).
• Succeeding syllabic final (sF).
• Succeeding syllabic tone (sT).
• Next succeeding syllabic tone (nsT).
• Phrase length in the number of syllables (Len).

We assume that there are m target points associating with a
syllable, m ∈ {1, 2, 3}. That is, at most three target points
are necessary for a lexical tone [6].
The acoustic features extracted from the speech samples

are described as follows.

The acoustic features:
• Order in them targets associating with a syllable (ith).
• Time of the ith target point (ti).
• F0 of the ith target point in Hz (f0i).
• Voice onset time of the syllable (tv).
If the syllabic initial is a voiced consonant, tv takes the
start time of the syllabic initial. Otherwise, tv takes the
start time of the syllabic final.

• End time of the syllable (te).
• F0 range [f0l

, f0h
] measured from the speech samples.

The F0 ranges are used to reduce the influences of differences
in voice ranges on the modeling of the tonal patterns; this is
confirmed through experiment. We convert f0i ∈ [f0l

, f0h
]

to λi ∈ [1, 2] using Eq. (1), i = 1, ...,m. This is done with
Z(t) = ζ0 using an iteration procedure, as described in [6].
Three kinds of training parameters are derived from the

measured acoustic features of the training speech samples.

The training parameters:
• m-parameter: number of target points associating with
a syllable,m ∈ {1, 2, 3}.

• t-parameter: normalized time t̂i related to the ith target
point; t̂i = (ti − tv)/(te − tv), i = 1, ...,m.

• f-parameter: mainly using λi converted from f0i , i =
1, ...,m. We also use f0i and log f0i as f-parameter to
train the corresponding f-tree for comparisons.

3. EXPERIMENTAL EVALUATION
3.1. Speech samples

This experiment used 5489 three- and four-syllabic phrases
uttered by two native speakers (a male and a female). The
use of these isolated phrases is partly because they cover all
the kinds of lexical tone combinations in a balanced manner.
These samples are divided into the training and test sets.

• Training set: 5074 isolated phrases (FM-set1)
– 1319 phrases uttered by a female native (F-set1)
– 3755 phrases uttered by a male native (M-set1)

• Test set: 415 isolated phrases (FM-set2)
– 146 phrases uttered by the female native (F-set2)
– 269 phrases uttered by the male native (M-set2)

The F0 contours were extracted from the speech samples at 5
ms intervals using a tool called TEMPO in STRAIGHT. The
potential target points were automatically extracted using an
algorithm that minimizes the root mean-square error (RMSE)
between the observed and reproduced F0 contours. The ex-
tra target points (more than three) were then deleted accord-
ing to tone types. The F0 ranges [f0l

, f0h
] measured from

the female and male samples were [122 Hz, 353 Hz] and [74
Hz, 196 Hz], respectively. Figure 1 shows an example of the
observed tone patterns (the “+” sequence) with eight target
points (the circles in the form (ti, λi)) at the top left corner.

3.2. Experimental method

A CART tool [9] was employed for machine learning. From
the results of a preliminary experiment, the initial features for
cI, pI, and sI were grouped into two classes, voiced and un-
voiced, and the final features for cF, pF, and sF were grouped
into four classes according to the syllable structures ([onset]
nucleus [coda]). Two experiments were then conducted on
the speech samples: one to determine which f-parameter and
what linguistic features were useful for characterizing the tonal
patterns, and the other to evaluate the CART-based model-
ing of the tone patterns. We trained three models, called the
female model, male model, and mixing model, with F-set1,
M-set1, and FM-set1, respectively. Both RMSE and correla-
tion criteria were used to evaluate the significance of the lin-
guistic features in characterizing the tonal patterns. Another
criterion — the absolute errors between the observed and pre-
dicted F0 contours — was used to evaluate the performance
of the CART-based models with all the training and test sets.

3.3. Experimental results

An example of tonal patterns predicted with the CART-based
models is shown at the top right corner of Fig. 1. The accu-
racy of prediction m-parameter is 89% for the mixing model.
The other main results are shown in Figs. 2 and 3 and Table
1, where boldface type indicates open testing results.
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Fig. 2. Correlations for closed (the empty symbols) and open
(the solid) tests of the three f-trees in comparison of λ-tree
with logf0-tree and f0-tree according to speaker-dependent
(the squares) and speaker-independent methods (the circles).
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Fig. 3. The most influential first correlations (the left) and
RMSE (the right) in characterizing t-parameter (the top) and
λ−parameter (the bottom) as a function of the linguistic fea-
ture set whose elements were increased on the addition of the
features listed on the x-axis, when training the mixing model.

Three observations can be made from the experimental re-
sults. First, utilization of the F0 ranges considerably reduces
the influence of the speaker’s voice ranges on training the
mixing model with λ-parameter compared with f0-parameter
as well as log f0-parameter, as shown in Fig. 2 (the circles).
Second, not all of the linguistic features defined above are

useful for characterizing the tonal patterns. In the case of
λ-parameter, for example, the lexical tone context and the
distinction between voiced and unvoiced initials in the cur-
rent and succeeding syllables are most useful, while the others
(i.e., cF, pI, sF, ppT, pF) are not necessary.
Third, the proposed method achieves good performance

by minimizing matching errors in F0. In the open tests, for
example, a mean error of 17 Hz with a standard deviation
(SD) of 15.8 was obtained with the female model, and 7.9
Hz (SD, 7.5) with the male model. Even with the mixing
model, the performance was degraded only slightly; less 2 Hz
increment in average error. For a reference, the F0 matching
errors in a closed test by the HMM-based approach [2] were
21.9 Hz (SD, 5.7 ) in another experiment with female speech.

Table 1. Mean errors (and SD) between the observed F0 contours
and the F0 contours predicted by the CART-based models with

λ-parameter according to speaker-dependent and mixing models.

Model Female samples Male samples
types (Closed) (Open) (Closed) (Open)
Female 15.5 Hz 17.0 Hz 11.3 Hz 11.2 Hz
model (SD:15.4) (SD:15.8) (SD:9.2) (SD:9.4)

Male 20.1 Hz 20.7 Hz 7.0 Hz 7.9 Hz
model (SD:16.6) (SD:16.1) (SD:6.5) (SD:7.5)

Mixing 17.3 Hz 18.9 Hz 7.3 Hz 8.3 Hz
model (SD:14.9) (SD:15.1) (SD:6.7) (SD:7.6)

4. CONCLUSIONS

This paper presented a CART-based approach within the frame-
work of the functional F0 model to modeling the tonal pat-
terns that can be characterized by the contextual linguistic fea-
tures. Good results were achieved in terms of F0 prediction
errors even when using a speaker-independent model trained
by female and male speech samples. Further, the most impor-
tant roles in characterizing the tonal patterns appeared to be
played by the lexical tone context and the distinction between
voiced and unvoiced initials in the current and succeeding syl-
lables. Future work will apply these CART-based models to
prosody synthesis with the F0 modulation technique in [8] by
designing an active scale Z(t), as expressed in Eq. (1).
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