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ABSTRACT

Modeling of pitch dynamics in addition to absolute pitch
modeling is highly desirable for robust pitch curve
prediction and unit selection in concatenative TTS systems.
Transition prosody models have been reported to improve
consistency and naturalness for pitch-accent and tonal
languages, like Japanese and Mandarin. In the current work
we revise a Gradient FO tree model, originally developed for
Japanese, and adjust it for American English. The resultant
model requires few computational resources at a runtime that
makes it highly suitable for embedded TTS applications. We
report encouraging results of applying it for an embedded
concatenative TTS system for American English.

Index Terms: speech synthesis, unit selection, prosody
modeling, FO modeling, embedded TTS

1. INTRODUCTION

Naturalness has become a main merit of quality of modern
state-of-the-art concatenative TTS systems, which generally
provide highly intelligible output, while a prosodic aspect of
speech synthesis is considered to be essential for natural
sounding TTS systems. Prosody is a combination of a
number of factors such as fundamental frequency (pitch),
duration, energy and pauses. Here we only consider pitch,
which is recognized as the most prominent factor for the
perception of prosody.

Producing natural FO curve while preserving high quality of
synthesized speech has been always considered a
challengeable task for concatenative TTS systems, because
judging a specific realization of pitch curve correct for non-
tonal languages is not always possible and highly subjective.
While pitch accented languages, s. a. Japanese, has a
considerable portion of lexical prosodic pattern realizations,
which can be unambiguously judged incorrect, in stress-
accented languages (or so called intonation languages), s. a.
English and many other European languages, there are very
few or no such patterns. Those languages rather convey
post-lexical pitch accentuation (e.g. high rising intonation in
non-wh-questions), based on semantics and high level of
speech understanding. They use pitch to convey surprise,
irony or enthusiasm, or to express prominence and focus,
and their usage of pitch patterns is sometimes oblique and
ambiguous.
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State-of-the-art concatenative TTS systems generally have
rough rule-based or probabilistic models for instant pitch
values [1]-[5]. These models are either used both in the unit
selection stage and produce the resultant pitch curve for the
synthesis [4] (Target-F0), or used just in the unit selection,
while the actual prosody is derived from the selected units
themselves [1][3][5] (Segment-F0). In our previous work we
reported that incorporation of dynamic FO observations
together with instant pitch observations is beneficial for
improving naturalness of large-scale TTS system [7].

In the other work [8], aimed for Japanese prosody
improvement, and inspired by a Mandarin prosody model
[5], it was proposed to incorporate dynamic and static pitch
features into the unit-selection process by separate pitch
gradient and absolute pitch GMM modeling and using log-
likelihood costs in unit selection process.

In the current work we present the revised and adjusted
Gradient FO model [8] for unit-selection and prosody
modeling of American English, combined with the Target-
FO and Segment-FO combination technique, proposed in [7].
The resultant system showed both subjective and objective
quality improvements compared to the baseline system [2],
while still keeping its attractiveness for low-cost, low-
computation implementations.

The work is organized as follows. First, the conventional
CART intonation model is shortly reviewed. Then, the
proposed Gradient FO tree modeling, adjusted for English,
will be described. Finally, the results of application of the
proposed algorithms to the embedded IBM CTTS system
will be presented and discussed.

2. BASELINE FO MODELING
2.1. Overview

The baseline [1][2] intonation model uses phonetic and
semantic features, gathered from the input text, to predict
rough pitch curve per syllable. The set of features includes a
syllable stress, a word prominence, a part of sentence,
syllable and word count, phonetic context and more. A set of
24 features per syllable is extracted over a context window
of five syllables, consisting of the current syllable plus the
two preceding and two following syllables. From these
feature vectors and observations, a decision tree (CART) is
built. The observation vector consists of three pitch values
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(in log-Hertz), obtained from the beginning of the first
syllable’s sonorant, the center of the syllable nucleus and the
end of its last sonorant. For each leaf of the tree, the average
of the FO distribution of the training data is used as the
Target-FO value at run-time.

The rough Target-FO curve, predicted from the CART
tree, is smoothed and used as a part of the overall cost for
the segment-selection dynamic search [1][2], where the basic
speech segment for the concatenation is an acoustic HMM
state, stored in acoustic contextual decision trees [2]. In
order to determine the segment sequence to concatenate, a
dynamic programming search is performed over all segments
aligned to each leaf of the acoustic decision-trees to
minimize a sum of segment costs.

The segment cost consists of a target cost and a
concatenation cost. The target cost is the weighted
summation of an FO cost, a duration cost, and an energy
cost. These costs are penalties for the differences in the
prosodic parameter values of the segments compared to the
target prosodic parameter values. For example, the target FO
cost for a speech segment is a penalty for the difference
between the Target-FO value and the Segment-FO value. The
target cost is added up to the concatenation cost, which is the
weighted summation of a spectral continuity cost and a FO
transition cost. These costs are the penalties for spectral and
pitch discontinuities at segment concatenation points.

2.2. Output F0 curve

There are two basic options for producing output FO curve,
mentioned beforehand, the Target-FO and the Segment-F0.
The first option results in rough and over-smoothed pitch
contour, while for the second option the quality of output
intonation is heavily dependent on the database size and the
correspondence between the database and the synthesized
text domains and may result in inconsistent to context output
FO curve.

In [7] we proposed an alternative technique for
combination between the Target-FO and the Segment-FO
curves to keep small intra-syllable pitch fluctuations
combined with the rough Target-FO modeling. This
technique proposes improved pitch naturalness compared to
the Target-FO output curve and improved pitch curve
consistency compared to the Segment-FO pitch curve
application.

3. THE GRADIENT FO MODEL

A complementary model of FO changes (applied together
with the conventional FO model) have been recently
developed and successfully applied for tonal and pitch
accented languages such as Japanese [8] and Mandarin [5].
Their usage is justified by the fact that most of intonation
patterns are expressed by FO curve dynamics (e.g. raising
intonation, lowering intonation, peak, flat, etc.), rather then
by FO absolute values. Those dynamic patterns are
extensively used in stress accented languages, such as
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English as well. In our previous work [7] we proposed using
both dynamic and static pitch observations for CART
building, and joint dynamic maximum likelihood (Dynamic
ML) target curve modeling at a run-time. Although the
proposed system resulted in improved Target-FO curve, it
was unsuitable for TTS embedded applications with reduced
computational resources. In the current work we adopted a
separated dynamic and static FO features modeling, [5][8],
while replacing a computationally intensive Segment-FO
modification towards a target [8] by the Target-FO and the
Segment-FO combination technique, reported in [7]. After
the review of the Gradient FO modeling [8], we will describe
its improvements and adjustments, applied for American
English embedded TTS system.

3.1. The tree build

The Gradient FO model, originally proposed in [8] for
Japanese, makes use of two types of CART trees. In
addition to the conventional pitch tree, based on three
absolute pitch observations per syllable, the complementary
gradient tree is built. It is based on three per syllable pitch
slope measurements, approximated by linear regression over
a fixed period of time ( 7, samples ahead of each

observation point).

Both absolute and gradient observations are based on
cleaned and smoothed pitch data, extracted from the pitch
mark data, available for the voice corpus. At the first stage
of the process, the reliable pitch marks were identified. A
pitch mark is labeled as reliable if its logarithmic FO value
is not too far from the value predicted by the quadratic
curve approximating the preceding three pitch marks. Only
the reliable pitch marks are used for the subsequent
processing steps. Then, we fill the missing FO values for the
devocalized regions and the unreliable regions by linearly
interpolating the logarithmic FO values of the neighboring
reliable pitch marks. Finally, we smooth the obtained
logarithmic FO contours by convolving a Gaussian function
to the contours.

300

T
Original FO Contour °

o Smoothed FO Contour ———————
% g & Linear Approximation Lines

o
3

Frequency [Hz]
1]
8

— @ oo

100 [

and seniors, how to get a job

2.5 3 35 4 4.5
Time [sec]

Figure 1: An example of a smoothed FO contour and linear
approximation. The lines are shifted for better visualization.



Examples of the smoothing and the linear approximation
lines are shown in Fig. 1.

Once the absolute FO tree and the FO gradient CARTS
are trained, a distribution of each tree leaf data is modeled
by a Gaussian Mixture Model (GMM).

3.2. Run time procedure

After the input feature vectors are collected, based on the
context information obtained by analyzing the input text,
they are used for absolute and gradient FO trees traversing.
Thus, it obtains for later use a set of GMM parameters for
each of the three observation point of each syllable. Those
models are used to define probabilistic FO-related costs,
used in the segment selection procedure. Three new
probabilistic costs are used instead of the conventional pitch
target and transition costs and summed up with other costs,
which are kept the same as in the baseline system [1][2].

Before calculating the FO-related costs for a segment, the
closest FO observation point within the syllable is
determined for the segment, and the GMM model, related to
that point is used for the cost calculations. The three new
costs comprise of 1) the Absolute F0 cost, given by

Cabsi = Wa IOg(fabs,/ ((psm:-/,i + Pena.i )/2)), where S (D) is a
GMM probability density, associated with the observation
point, closest to the ith segment, and p,,, . and p,, are the

ith segment starting and ending log-pitch values respectively
and w, is a tunable cost weight; the Gradient F0 cost and the

Linear Approximation Error cost [8].

To calculate the Gradient FO cost, the FO gradient in the
last Ts-second period of the current segment sequence is
approximated. This is done by combining log-FO values
{p,} of the starting and the ending points of the segments in

the interval with their predicted timings {z,} and then
calculating the linear regression /()= g,t+s, over those

defined as
Conts =W, 108( [, (g))), Where £, (p) is a GMM

probability density, associated with the observation point,
closest to the i-th segment, and w, is a tunable cost weight.

points {(#,p,)}. Then, the cost is

The Linear approximation error cost is given by
N,
=w, NLZ(pk —lf(tk))2 , and it is used to penalize poor
i k=1
linear approximation.

After the segment selection stage, the original work [8]
proposes computationally loaded FO adjustment stage to
modify the Segment-FO curve (this stage was replaced by the
Segment-FO and Target-FO combination technique [7], when
adopting system for embedded English TTS, so its
description is omitted here). Finally, the resultant pitch curve
is slightly smoothed and is used for the synthesis of the
output speech.

Coppi
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3.3. The Gradient model, revised
3.3.1. The tree build

Several adjustments of the algorithm were made in the tree
build and the data collection stage. First, the three pitch
observation points were spread over the syllable nucleus, as
done in the baseline English system [1][2], rather then
evenly spread over the syllable/mora [5][8].

Second, we use 3-dimentional observations for tree
building, thus jointly predicting 3 values per syllable (for
absolute and gradient values, separately). Each tree leaf was
modeled by a single Gaussian model to extract the Target FO
easily to use for final FO curve generation.

Third, the gradient approximation at a build time was
revised. To better fit the gradient approximation at a run-
time, we approximate it using only starting and ending pitch
values per segment, as it is done at a run-time. However, in
the linear regression operation, as described above, a few
points are involved (we have roughly 9 segments per
syllable), and both long and short segments contribute the
same to the slope calculation, so both the build-time data
collection and the run-time evaluation should be revised.
After the pitch smoothing stage, the smooth pitch curve is
sampled at segment joints, so the continuous piecewise
linear representation p(¢) of pitch curve portion is defined
over the T, time interval. The optimal solution for that

regression problem may be formulated by minimizing the
continuous squared error function

E(t)= J (p(t) - (at + b))* with respect to a and b. Zeroing

=T,

the derivatives results in:

[/ ‘ 3y 2y
F= [ = [ (@ +bode=a" ("’3 L), pt ("’2 1)
4T, 4T,
i i 2 T 2 (1)
E= [ [l J(ax+b)dx=a#+b7}

4T, 4T,
And the optimal solution for the slope approximate gives
a=(12F,—6F,(2t,—T,))/T,, where F, and F, can be also

expressed analytically. This closed analytic solution may be
recursively formulated to be applied efficiently at a run-time.

3.3.2. Segment selection

The absolute log-pitch and log-pitch slope data were
collected consistently to the build, revised for English as
described in section 3.1. The FO related costs were
calculated as described in section 3.2., while the probability
distributions were recalculated as follows.

Let 7,,¢,,, be observation points, adjacent to the i-th

segment mid point 7, , (¢, <7, <¢,,) . Then, knowing the
observation data distributions N(u;,07),N(u,,,,07.,), We can

evaluate the parameters of the Gaussian distribution atz, ,



N

assuming that p,=ap,_ +(-a)p,,a= . In that case,

Jj+l ti—t;

the distribution density at 7, equals to

f(p)=Nla,,, +(1-a)u,.a*a?, +(1-af o) (2)

The additional revision has to do with more precise log-
likelihood calculation. The log-likelihood costs, as
formulated in section 3.2., may become negative if not hard-
limited or scaled. The scaling factor is unknown at runtime,
and limiting makes costs less precise near the peak.
In order to resolve this negative costs problem, we
replaced probability densities £, (p,),  fou,(g) DY

probability approximations Pr,, .(p,,Ap),  Pr,,, (g,Ag2) ,
where Ap, Ag are predefined data vicinities.

3.3.3. Output pitch curve

The Segment-FO and Target-FO combination technique,
proposed in [7], was used here to combine Segment-FO with
Target-FO. The explicit Target-FO exists only for single
Gaussian modeling of pitch tree leaves (which is the case of
the English TTS system settings), and it makes use of the
absolute pitch model solely. Both the gradient and the
absolute pitch trees are used for the segment selection, so
they influence the Segment-FO curve.

4. EXPERIMENTS AND RESULTS

A low-footprint (10MB) embedded American English TTS
system [6] was used to evaluate the proposed algorithm (The
Gradient tree modeling, denoted as system C), compared to
the baseline CART prosody modeling [1][2] (system A), and
the Dynamic ML solution, previously reported in [7] (system
B). A set of subjective evaluations has been conducted to
assess the perceptual quality, obtained by application of the
above. The subjects (7 native English speakers, having no
expertise in speech science) listened to 50 sentence pairs
each, containing random pairs from the three systems of the
above. The subjects were instructed to choose between 5
options: no preference, strong preference to either side or
weak preference to either side.

Table 1: A-B preference tests for the baseline (4), the Dynamic
ML (B) and the Gradient F0 (C) systems

Pref. No baseline (A) Dynamic ML (B)

pref.| Any pref. |Strong pref.| Any pref. | Strong pref.
% [17.5] 24.6 0.9 57.9 19.3
Pref. No baseline (A) Gradient (C)

pref.| Any pref. |Strong pref.| Any pref. | Strong pref.
% |21.5| 215 0.8 57 15.7
Pref. No Dynamic ML (B) Gradient (C)

pref.| Any pref. |Strong pref.| Any pref. [Strong pref.
% 47 25.2 0.9 27.8 4.3

The results are presented at Table 1. It can be seen, that
both system (B) and system (C) significantly (»p < 0.05)
outperform the baseline system (A). The differences between
the (B) and (C) were found statistically insignificant, with a
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slight preference towards the system C. So, the
computationally efficient separate modeling of FO static and
dynamic features proved to perform at least as good as the
joint Dynamic ML solution.

5. SUMMARY

In the current work the FO Gradient model, first developed
for Japanese [8], was revised and adjusted for the embedded
English TTS engine [6]. Among main revisions of the
system are the optimal piecewise linear gradient estimation
(1), linear model interpolation (2) and adopting the
Segment-FO and Target-FO combination technique,
described in [7], rather then computationally costly FO
adjustment [8]. The resultant computationally efficient
algorithm, fits well for embedded fixed point platforms and
performs at least as good as the joint Dynamic ML solution,
previously reported [7].
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