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ABSTRACT

In this paper, we present the derivation of the backfitting training
algorithms for generic p-layer additive F0 models for arbitrary posi-
tive integer p. We have presented the special cases of the algorithms
with p = 2 and p = 3 that have been successfully applied to the mod-
elings of Japanese and English F0 contours, whereas the derivation
of the algorithm was presented only for the two-layer case. The ad-
ditive F0 model have smoothing parameters that establish a trade-off
between the fit to the training data and the smoothness of the fitted
curves, which have been all set to unity in the previous works. In
this paper, we also present an optimal approach to set the values of
these parameters using cross validation. We performed the training
using the Boston University Radio News Corpus and confirmed the
effectiveness of the proposed method.

Index Terms— speech synthesis, fundamental frequency, addi-
tive models, statistical learning, intonation modeling

1. INTRODUCTION

Corpus-based approach to speech synthesis has been widely explored
in the research community in recent years [1, 2, 3]. Intonation mod-
eling, or generation of fundamental frequency (F0) contour plays a
crucial role in synthesizing natural sounding speech from input text.
We previously proposed a framework of F0 modeling using Additive
Models [4] and successfully applied it to the modeling of F0 contour
of Japanese and English speech [5, 6, 7]. The Japanese F0 model is a
two-layer additive models consisting of the intonational phrase com-
ponents and the accentual phrase components, whereas the English
model consists of three layers, namely, the phrase components, the
word components, and the pitch accent components. The additiveF0

modeling approach has advantages over conventional techniques in
that, for example, the model training from the corpus is done by a sim-
ple and straightforward procedure without any preprocessing, once
the set of features to identify component functions are determined. It
also has a good property that the model output is a curve, rather than
a sequence of constants, which is convenient for the use in runtime
synthesis requiring no significant postprocessing before use. Further-
more, since it is a nonparametric model with no specific functional
form, it is natural to expect that it is applicable to a wide variety of
languages in addition to Japanese and English.
Although the additive F0 modeling approach may be applicable to

a wide variety of languages where the number of additive layers p can
be larger than that for Japanese, we have so far presented the deriva-
tion of the backfitting training algorithms from the error criterion only
for the two-layer case [5, 6]. In this paper, therefore, we present the
derivation of the general backfitting training algorithms for p-layer
additive F0 models, where p is an arbitrary natural number.
The additive F0 models have smoothing parameters that establish

a trade-off between the fit to the training data and the smoothness of

the fitted curves. They have been all set to unity in our previous works
on Japanese and English. Although the experimental results have so
far been satisfactory, we can expect an even better results or feel more
secure if these hyper-parameters are optimized using the training data.
In this paper, therefore, we propose an optimal approach to set the
values of these parameters using 10-fold cross-validation [4].

In the next section, we derive a training algorithm for p-layer ad-
ditive F0 models from the regularized least-squares error criterion.
We then describe the experiment where we optimize the smoothing
parameters with cross-validation, followed by the conclusion.

2. BACKFITTING ALGORITHM FOR P-LAYER ADDITIVE
F0 MODELS
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Fig. 1. Schematic diagram of an instance of a two-layered version of
additive F0 model, f(x) = α + fk(1)(x(1)) + fk(2)(x(2)). In this

example, k(1) continues to be of (hypothetical) type “1a”, while k(2)

equals “2a” during 0 ≤ x(1) ≤ 60, but changes to “2b” at x(1) = 60.

In this section, we sketch the derivation of the backfitting train-
ing algorithm for p-layered additive F0 models from the regularized
least-squares error criterion, where p is an arbitrary natural number.
It deals with the generic case that includes the two-layered and three-
layered models applied for modeling Japanese and English F0 [6, 7]
as special cases.

The F0 contour is modeled as a scalar random variable Y that
has a functional dependence Y = f(z) + ε on the vector of input

variables z = (k(1), x(1), ..., k(p), x(p)). The error ε is assumed to be
normally distributed with mean 0 and variance σ2. The function f(z)
has the form of the sum of p component functions and a constant α,

f(z) = α + fk(1)(x
(1)) + · · · + fk(p)(x

(p)), (1)
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where each of k(m) (m = 1, ..., p) is an index variable that represents
a type of F0 component in them-th layer, and it selects the specific F0

component function fk(m) for that type. Each of the continuous vari-

ables x(m) (m = 1, · · · , p) represents relative time that starts from
zero when a new intonation component of type k(m) = κ starts at
the m-th layer. We impose a simplifying assumption that syllables
always have the same time length in the model. Therefore, before we
start training, the raw F0 data is time-normalized to have equal num-
ber of points per syllable to make it possible to learn the model from
the speech corpus that originally have varying per-syllable durations.
A schematic diagram of a two-layer additive F0 model is shown in
Fig 1. We will learn this regression model from the training dataD,
a collection of input-output pairs D = {(zn, yn) | n = 1, · · · , N},

where zn = (k
(1)
n , x

(1)
n , · · · , k

(p)
n , x

(p)
n ). Note that N is the total

number of data points in the training data, where each data point repre-
sent a (normalized) time instance, and theseN points may correspond
to hundreds or thousands of utterances. The boundaries of linguistic
units such as utterance, intonational phrase, or word are represented
through the change of the value of k(m) and the reset of x(m) to zero
for linguistic units at the m-th layer. The estimate of the component
functions of f are obtained from this training data as the minimizer of
a regularized loss functional L, which is defined as the sum of squared
errors plus roughness penalties on all the component functions, s.t.,

L(f) =

NX

n=1

(yn − f(zn))2+

pX

m=1

λm

X

κ∈R(k(m))

Z
fκ

′′(ξ(m))2dξ
(m)

, (2)

where “R(v)” stands for the range, i.e., the set of distinct values, of
the variable v. The first term of (2) measures the closeness to the
training data while the second term penalizes the curvatures of the
component functions, and the smoothing parameters λm establish a
trade-off between them. Large values of λm yield smoother curves
while smaller values result in more fluctuation.
In the derivation of the training algorithm from this error criterion,

we make use of p different ways of partitioning the original training
data D in association with the p additive layers, in order to have a
focus on each of the intonation component types at each layer. The
partitioning of the training data at the μ-th layer is defined as

D =
[

κ∈R(k(μ))

D(μ,κ), (3)

where each of the mutually exclusive partitions D(μ,κ) is a collection

of data items (z, y) = (k(1), x(1), ..., k(p), x(p), y) from D, whose
component type is κ at the μ-th layer, i.e.

D(μ,κ) = {(k(1)
, x

(1)
, ..., k

(p)
, x

(p)
, y) | k(μ) = κ} (4)

The first term of (2), the sum of squared errors, can be re-organized
according to the partitioning at the μ-th layer as

NX

n=1

(yn − f(zn))2

=
X

κ∈R(k(μ))

X

(z̄,ȳ)∈D(μ,κ)

{ȳ − f(z̄)}2

=
X

κ∈R(k(μ))

X

(z̄,ȳ)∈D(μ,κ)

{ȳ − α −

pX

m=1

fk̄(m)(x̄
(m))}2

(5)

where we denote a training data point in a partition as (z̄, ȳ) =

(k̄(1), x̄(1), · · · , k̄(p), x̄(p), ȳ).
Using the property that the integral of the square of the second

derivative appearing in the second term of (2) is minimized by a class
of functions called natural cubic splines, as we did in [6], we can now
express each fκ as a linear combination of natural cubic spline bases
with knots at unique values of x̄(μ) in D(μ,κ),

fκ(x) =

JκX

j=1

N
(j)
κ (x) θ

(j)
κ , (6)

for κ ∈ R(k(μ)) and μ = 1, · · · , p, where N
(j)
κ (x) (j = 1, · · · , Jκ)

are natural cubic spline bases, θ
(j)
κ are weighting parameters, and Jκ

is the number of unique values of x̄(μ) in D(μ,κ) [6]. Using this ba-
sis expansion form, the sum of squared errors in (5) can be further
rewritten as

NX

n=1

(yn − f(zn))2

=
X

κ∈R(k(μ))

X

(z̄,ȳ)∈D(μ,κ)

{ȳ − α −

pX

m=1

fk̄(m)(x̄
(m))}2

=
X

κ∈R(k(μ))

{(yκ − α −

pX

m=1

f
(m)
κ )T ·

(yκ − α −

pX

m=1

f
(m)
κ )}

=
X

κ∈R(k(μ))

{(yκ − α −

pX

m=1
m�=μ

f
(m)
κ − Nκθκ)T ·

(yκ − α −

pX

m=1
m�=μ

f
(m)
κ − Nκθκ)}, (7)

where yκ is a column vector of length Iκ consisting of all ȳ’s in
D(μ,κ), and Iκ is the number of data points in the partition D(μ,κ).
(Vectors will be all column vectors unless otherwise noted, hereafter.)
Vectorα simply consists of Iκ α’s. f (m)

κ is a vector of fk̄(m)(x̄(m))’s
evaluated at each data point inD(μ,κ). Nκ is an Iκ×Jκ matrix and its

i-th row represents the values of N
(1)
κ (x̄(μ)), · · · , N

(Jκ)
κ (x̄(μ)) eval-

uated at the i-th data point in D(μ,κ). θκ is a vector of all θ
(j)
κ for

j = 1, · · · , Jκ.
Using the basis expansion form, the second term, or roughness

penalty term of (2) can be rewritten as

pX

m=1

λm

X

κ∈R(k(m))

Z
fκ

′′(ξ(m))2dξ
(m)

=

pX

m=1

λm

X

κ∈R(k(m))

Z JκX

j=1

{N (j)
κ

′′
(ξ)θ(j)

κ }2dξ
(m)

=

pX

m=1

λm

X

κ∈R(k(m))

θ
T
κ ΩNκ

θκ, (8)

whereΩNκ
is a Jκ × Jκ matrix whose (p, q)-element is

ΩNκ
(p, q) =

Z
N

(p)
κ

′′
(ξ)N (q)

κ

′′
(ξ)dξ, 1 ≤ p, q ≤ Jκ. (9)
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Now the whole loss functional L(f) in (2) is given by the sum
of (7) and (8). We note that it is quadratic in every θκ at all layers
and take a partial derivative of L(f) and set it to zero to obtain the
equation for θκ that minimizes L(f) which is

θ̂κ = (NT
κ Nκ + λμΩNκ

)−1
N

T
κ ·

(yκ − α −

pX

m=1
m�=μ

f̂
(m)

κ ) (10)

for all κ ∈ R(k(μ)), for all μ = 1, · · · , p. This system consists of J
equations with J unknowns, where

J =

pX

μ=1

X

κ∈R(k(μ))

Jκ.

We note that unknowns θ
(j)
κ are not only included in θ̂κ but also in

f̂
(m)

κ in the equation (10). Using the relationship f κ = Nκθκ, we

can rewrite (10) to obtain the set of linear equations in f̂κ,

f̂κ = Nκ(NT
κ Nκ + λμΩNκ

)−1
N

T
κ ·

(yκ − α −

pX

m=1
m�=μ

f̂
(m)

κ ), (11)

for μ = 1, ..., p and κ ∈ R(k(μ)) and we have shown that the com-
ponent functions are obtained as the solution of this linear system.

This linear system is efficiently solved using a backfitting algo-
rithm depicted in Fig 2, a repetitive method that combines Gauss-
Seidel and Jacobi’s methods [8]. In the algorithm, we define a
smoother matrix Sκ which is an initial part of the equation (11), i.e.,

Sκ = Nκ(NT
κ Nκ + λμΩNκ

)−1
N

T
κ . (12)

The algorithm starts by setting all f̂κ to zero and then proceed by

repetitively updating f̂κ by the difference between the training data
yκ and the current estimate of the sum of additive components except

f̂κ, smoothed with Sκ.

(1) (Initialization)

α̂ =
1

N

NX

n=1

yn,

f̂κ = 0, for all κ ∈ R(k(μ)) for all μ = 1, · · · , p.

(2) (Cycle)
Repeat the following, until f̂κ’s stabilize:

For μ = 1, ..., p :

For all κ ∈ R(k(μ)) :

f̂κ ⇐ Sκ(yκ − α −

pX

m=1
m�=μ

ˆ
f (m)

κ )

Fig. 2. Backfitting algorithm for a p-layer additive F0 model.

3. MODEL TRAININGWITH SMOOTHING PARAMETER
SELECTION

3.1. Experimental Settings

The training algorithm described in the last section was applied to the
training of an three-layer English F0 model with an optimal selection
of smoothing parameters described in this section. Three layers con-
sist of the phrase layer, the word layer, and the pitch accent layer with
the syllable granularity. The model was trained and tested using the
Boston University Radio News Corpus [9], speaker F2B. This part of
the entire corpus consists of approximately 45 minutes of radio news
read aloud by a female speaker of American English. ToBI labels
are assigned by hand to the corpus. We further transcribed the cor-
pus with syllable and word labels by performing a forced alignment
with acoustic models adapted to this corpus. All 122 paragraphs that
had full ToBI labels associated with them were divided into 110 para-
graphs containing 12,704 syllables for training and the remaining 12
paragraphs with 1,863 syllables for testing. F0 values were extracted
from the corpus every 10ms using the Snack Sound Toolkit [10]. Pos-
sible octave errors were rectified by a modified de-step filter [11], in
which F0 instances detected as too low were doubled in frequency.
The mean and the standard deviation of the F0 were 170.5 Hz and
42.4 Hz in the training set, and were 170.5 Hz and 43.9 Hz in the
test set. The original pitch samples were normalized to have the same
number of data points per syllable interval by linearly stretching or
shrinking each syllable, before the estimation. The number of data
points per syllable was set to ten in the experiments described in this
paper. There were 64 distinct intonational phrase types, 59 word-level
component types, and 24 pitch accent types including contextual la-
bels and <none> in the training set [7].
The smoothing parameters λm, (m = 1, 2, 3)were chosen by 10-

fold cross-validation (CV) [4] described below. About 15 iterations
were enough for the convergence of backfitting iteration for the three-
layer additive model presented in this paper. The elapsed time for the
training with 15 iterations was approximately 200 seconds using one
CPU on a 2.0GHz Intel Xeon machine running Linux. As an objective
evaluation, we measured the accuracy of F0 contour production in
terms of root mean squared error (RMSE) and correlation coefficient
(Corr) between model output and corpus F0 in the voiced portions
of the data, which are widely used to measure the goodness of F0

models [12, 13, 14, 15]. Specifically, we calculated these values by
aligning the model output with the corpus F0 by linearly adjusting the
length of the model output, then using the intervals where both model
output and corpus F0 are existent.

3.2. Smoothing Parameter Selection

In the loss functional for our three-layered F0 model,

L(f) =

NX

n=1

(yn − f(k(1)
n , x

(1)
n , k

(2)
n , x

(2)
n , k

(3)
n , x

(3)
n ))2+

3X

m=1

λm

X

κ∈R(k(m))

Z
fκ

′′(ξ(m))2dξ
(m)

, (13)

there are three smoothing parameters, namely, λ1, λ2, and λ3, which
we need to optimize for the best expected predicting power of the
model. We performed a 10-fold cross-validation [4] for this purpose.
We had noticed from a few preliminary experiments that the additive
F0 model is quite insensitive to linear changes in these parameters.
Therefore, we chose to explore discrete values that evenly change ex-
ponentially. We chose grid points

(10i/4
, 10j/4

, 10k/4), (i, j, k = · · · ,−2,−1, 0, 1, 2, · · · )

4247



in the three dimensional space spanned by λ1, λ2, and λ3 as the
search space for the best combination of these parameters. The op-
timization procedure was done in three stages where it first makes a
rough global estimate and then seeks a local optimum:

1. First we tied three parameters together i.e. λ1 = λ2 = λ3,
and varied the value from 0.0001 to 10000 to find the value
that yield the best values of root mean squared errors (RMSE)
and the correlation coefficient (Corr), which turned out to be
1000. The best cross-validation (CV) estimates [4] of RMSE
and Corr were 34.91 and 0.5738, respectively.

2. Each of λ1, λ2, λ3 were varied with the other two parame-
ters fixed to the best tied value (1000) to seek one that gives
the best RMSE and Corr. The set of the best values obtained
from this process was (λ1, λ2, λ3) = (104, 1010/4, 106/4) =
(10000, 316.2, 31.62), where the CV estimates of RMSE and
Corr were 34.861 and 0.5749, respectively.

3. A gradient search was performed from this point to iteratively
pick up the adjacent grid point with best average improve-
ment of RMSE and Corr, up to the point from which no more
improvement is obtained. As it turned out, the best combi-
nation from the procedure turned out to be (λ1, λ2, λ3) =

(104, 1011/4, 106/4) = (10000, 562.3, 31.62). However, the
search for the best parameters were effectively convergent be-
fore this gradient search and the CV estimates of the RMSE
and Corr made almost no change, which were 34.860 and
0.5749, respectively. (The RMSE and Corr values evaluated
around the optimum point is shown in Fig. 3.)

When trained with the whole training data, the parameter set (λ1, λ2,

λ3) = (10000,562.3,31.62), yielded the RMSE and Corr scores, 33.85
and 0.638, respectively, for the test set.
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Fig. 3. RMSE and Corr plotted against the changes in λ1 and λ2 when
λ3 = 106/4. Red arrows point to the optimum combinations where
λ1 = 104 and λ2 = 1011/4.

4. DISCUSSION

From the experiment, we confirmed that the determination of the
smoothing parameter values by 10-fold cross validation, in fact, im-
proves the training results as shown in the Table 1. We, however,
found out that the goodness-of-fit measures we have been using, i.e.
RMSE and Corr, are not very sensitive to the changes in smoothing
parameter values and that they were already close to the optimum
with the baseline settings.
It is also interesting to see that the smoothing parameters after

optimization show the tendency of having larger values to incur more
smoothness for longer-span components (e.g. λ1) and smaller values
that compells less smoothness for shorter-span components (e.g. λ3),
which matches our intuition.

Table 1. RMSE and Corr results for the test set with baseline (λ1 =
λ2 = λ3 = 1) and 10-fold CV-trained models.

method RMSE Corr

baseline 33.98 0.6340
10-fold CV 33.85 0.6380

5. CONCLUSION

In this paper, we presented the derivation of the backfitting training al-
gorithms for the general multi-layer additive F0 models and presented
an optimal method to set the values of smoothing parameters using
cross-validation. We performed the training using an English speech
corpus and confirmed the effectiveness of the proposed method.
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