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ABSTRACT

We present a comparative study of several SVM speaker
verification (SV) systems based on sequence kernels: the
GMM-supervectors kernel, the Fisher kernel, the Gener-
alized Linear Discriminant Sequence (GLDS) kernel, our
Feature Space Normalized Sequence (FSNS) kernel and a
“novel” sequence kernel in SV, the Correlation kernel. We
also compare these SVM systems to the conventional gener-
ative UBM-GMM. We carry out experiments on the NIST’2005
SRE evaluation set. The results show that the FSNS sys-
tem yields comparable performances to UBM-GMM and
significantly outperforms GLDS. They also show that the
GMM-supervectors system outperforms all the others. Fi-
nally, they show that the best performances are achieved
by fusing the FSNS and the GMM-supervectors systems.

Index Terms- Speaker verification, Sequence kernels,
SVM

1. INTRODUCTION

Support Vector Machines are an interesting alternative to
the traditional Gaussian Mixture Models (GMM) for speaker
verification using acoustic features, as they are well suited
to separate rather complex regions in binary classification
problems, through an optimal nonlinear decision bound-
ary. A challenge however in applying SVM to monitor con-
versations in a communication network, such as in NIST
SRE (Speaker Recognition Evaluation) campaigns, is to
deal with the huge amount of data available. Thus, in or-
der to exploit a rich database involving various types of
low quality cell phones with an SVM training algorithm,
the frame-based approach needs to be adapted to make a
tractable training and testing procedure. A solution could
be to use clustering methods to reduce the size of the train-
ing. On the other hand, the problem in speaker verification
is to classify sequences of vectors. It is then more natural to
conceive kernels that measure similarity between sequences
and use them in an SVM architecture.

The first contribution of this paper is to present a com-
parative study of four state-of-the-art SVM speakers ver-
ification system based on kernels between sets of vectors
(that we call sequence kernels for simplicity). The first one
is the Generalized Linear discriminant Sequence (GLDS)
kernel that has been developed in [2] and was actually the
first sequence kernel used (with success) in SVM speaker
verification. The second one is the Feature Space Normal-
ized Sequence (FSNS) kernel that we developed recently in
[8]. This kernel is actually an extension of the GLDS kernel

that overcomes theoretically and practically the limitations
of the latter. The third one is the GMM-supervectors se-
quence kernel that has been developed recently in [3]. This
kernel has been shown to be among the best SVM-based
systems in the recent NIST SRE campaigns, in term of in-
dividual performances. The fourth one is the Fisher kernel
that has been extensively studied in [13].

The second contribution is to introduce the correlation
kernel [9] as a “novel” sequence kernel, in the sense it has
never been applied to speaker verification (to the best of our
knowledge). This kernel is indeed attractive in such an ap-
plication because it has a closed form for GMM, and easy to
compute for the particular GMM we deal with in speaker
verification. We also compare all these SVM systems to
the conventional generative UBM-GMM (Universal Back-
ground Model-GMM) system. The experiments are carried
out on the NIST’2005 SRE evaluation set.

2. SEQUENCE KERNELS IN SVM SPEAKER
VERIFICATION

Sequence kernels can be classified in 3 categories: Mutual
Information (MI) kernels, kernels between distributions and
combination of vector kernels. Roughly speaking, the basic
idea behind MI kernels [11] is to draw a similarity measure
from a prior parametric density. The popular Fisher ker-
nel [5] can be actually seen as a MI kernel. The general
principle of kernels between distributions is to estimate a
probability distribution on each input sequence, and then
to compute a kernel between these distributions. Probabil-
ity product kernels [6] are a well known example of such
kernels. As for the last category, it simply consists in con-
sidering a functional of inter- and/or intra-sequence vector
kernels. The GLDS and FSNS kernels are examples of such
kernels. We refer to [7] for a more detailed description of
the different sequence kernels families. From now on, we
note X = {xt}t=1...TX and Y = {yt}t=1...TY two sequences
of d-dimensional vectors.

2.1. The Fisher kernel

In their general form, MI kernels cannot be readily applied
to speaker verification. However, the Fisher kernel (an ap-
proximation of a MI kernel) is easy to compute for GMM.
If θo = {ωg, μo

g, Σg | g = 1 · · ·G} is the parameter set of the
prior GMM (the UBM-GMM model), the Fisher kernel is
given by: κFisher(X ,Y) = δ(θo,X )T F−1 δ(θo,Y), where

• The Fisher mapping δ(θo,X ) = ∇θ log p(X|θ)|θ=θo

contains the derivatives of the log-likelihood p(X|θ)
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w.r.t. density parameters at θo.

• The Fisher information matrix F = E [δ(θo, ·)δ(θo, ·)T]
encodes the second moments of mappings δ(θo, ·).

The Fisher mapping on a vector x has size G (2d + 1)
and can be written as:

δ(θo,x) =
ˆ
δ1(x) , · · · , δG(x)

˜T
, where

δg(x) = γg(x)

2
4 1

x − μo
g

diag
`
(x − μo

g) (x − μo
g)T − Σg

´
3
5

and γg(x) =
N `

x|μo
g, Σg

´
PG

h = 1 ωh N (x|μo
h, Σh)

.

Then, on a sequence, it is computed [13] as: δ(θo , X ) =
1
T

PT
t=1 δ(θo,xt). When the total number of parameters

is too high, a robust estimation of F would require too
much background data. Thus in most applications, F is
approximated diagonally.

2.2. Kernels between GMM

Generally speaking, kernels between distributions have an
analytical expression for exponential family distributions
(see [6] for probability product kernels, and [14] for prob-
abilistic distances). For GMM densities, their computa-
tion is generally difficult. But if all GMM share the same
weights ωg and the same covariance matrices Σg, some cal-
culus of integrals can be simplified. In the following, we
assume that GMM are trained on sequences by adapting
means only, as it is commonly done in speaker verification.
μX,g denotes the gth component of the GMM adapted on a
sequence X .

2.2.1. The correlation kernel

The only probability product kernel which have a closed
form for GMM is the correlation kernel [9]:

κcorr(X ,Y) =

Z
Rd

p(z|θX)p(z|θY) dz = (2π)−
d
2 ω

T ΓX,Y ω ,

where the vector ω = [ ω1 , · · · , ωG ]T contains GMM weights
and ΓX,Y is the G×G-symmetric matrix with element values

Γg,h = 1√
det(Σg+Σh)

e−
1
2
(μX,g − μY,h)T (Σg + Σh)−1 (μX,g − μY,h)

A problem with the correlation kernel is that it yields values
in a wide range: the mean vectors {μX,g , μY,g} can be very
close, still κcorr(X ,Y) ca be much lower than κcorr(X ,X )
and κcorr(Y,Y). If no precaution is taken, the classification
model may over-fit. A simple way to avoid this problem is
to compute the “spherically” normalized kernel

κ̊corr(X ,Y) =
κcorr(X ,Y)p

κcorr(X ,X ) κcorr(Y,Y)
.

This normalization adds RBF-like properties to the kernel
since κ̊corr(X ,X ) = 1 for all X (all mappings belong to a
hypersphere in the feature space). It does not prevent from
over-fitting, but resolves some numerical problems.

We underline here that we did not find in the literature
any application of the correlation kernel in speaker verifica-
tion. This will be carried out in this paper.

2.2.2. Kernel between GMM supervectors

A widely used measure to compare probability distributions
is the KL divergence DKL. In [4] it is shown that the KL
divergence between two GMM is upper bounded by a sim-
ple analytic expression, which can be written for equally
weighted mixtures of Gaussians N as:

DKL

 
GX

g=1

ωg NX,g

‚‚‚PG
g=1ωg NY,g

!
≤

GX
g=1

ωg DKL(NX,g‖NY,g)

| {z }
DGMM(pX,pY)

,

where the (symmetric) KL divergence between two Gaus-
sians NX,g and NY,g with same covariance Σg is given by
the Mahalanobis distance between mean vectors:

DKL(NX,g‖NY,g) =
`
μX,g − μY,g

´T
Σg
−1 `

μX,g − μY,g

´
.

DGMM is actually the square of the euclidean distance be-
tween “GMM supervectors” φX [3]. These supervectors are
the concatenation of G normalized mean:

φX =

2
4 ω1 Σ1

−1/2μX,1 ,
· · · ,

ωG ΣG
−1/2μX,G

3
5 (1)

Contrarily to the KL exponential embedding e−γDKL ,

the GMM-supervector kernel κGMM(pX, pY) = e−γ DGMM(pX, pY)

satisfies Mercer conditions, since it is the RBF Gaussian
kernel in the feature space defined by (1).

2.3. The GLDS kernel

The GLDS kernel [2] involves a polynomial expansion φq,
with monomials (between each combination of input vector
components) up to a given degree q. For example, if q =
2 and x = [x1, x2]

T is a 2-dimensional input vector, then
φq(X ) = [x1, x2, x1

2, x1x2, x2
2]T. The GLDS kernel is

given by:

κGLDS(X ,Y) =

"
1

TX

TXX
t=1

φq(xt)

#T

Sq
−1

"
1

TY

TYX
s=1

φq(ys)

#
(2)

where Sq is the second moment matrix of polynomial ex-
pansions φq estimated on some background population, or
its diagonal approximation for better efficiency. In practice,
the GLDS kernel allows only expansion with monomials up
to degree 3 because the size of the explicit polynomial ex-
pansion φq becomes intractable for polynomial expansions
with maximal degree q higher than 3.

2.4. FSNS kernels

An interesting problem then is to find a tractable way to
compute or approximate (2) for any q. A more general
problem is to provide a finite-dimensional (and tractable)
form of (2) for any expansion φ including infinite ones. By
this way, radial basis function (RBF) kernels, which have
been proved very efficient in most kernel learning methods,
could also be used.
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We addressed this problem in [8] by proposing an ex-
tension of the GLDS kernel for any expansion φ. This
led to the formulation of a rich family of sequence kernels,
which we referred to as Feature Space Normalized Sequence
(FSNS) kernels. Given a vector kernel k, the main step
in computing a FSNS kernel is to operate an Incomplete
Cholesky Decomposition on the Gram matrix of the back-
ground data. This yields a (relatively) small size codebook
C = {bI1 , . . . ,bIm} of background data. Then, the FSNS
kernel is defined as:

κFSNS(X ,Y) = ψC(X )T R ψC(Y)

where R is a normalization matrix and ψC is the sequence
empirical map on C:

ψC(X ) =

2
64

1
TX

PTX
t=1 k(bI1 ,xt)

...
1

TX

PTX
t=1 k(bIm ,xt)

3
75

We refer to [8] for a full description of the theoretical and
practical aspects of FSNS kernels.

3. EXPERIMENTS

3.1. Database and front-end processing

All sequences used for development and evaluation come
from the NIST’2005 SRE database in “core test” condition,
limited to the female population. They include about two
minutes of telephone speech pronounced by a same speaker.
The development protocol was defined by the Biosecure
project [12] and involves distinct sets of speakers by means
of audio sequences from NIST 2003 and 2004 SREs. The
background database includes 283 sequences, that corre-
spond to about 9 hours of speech. Besides, 113 additional
sequences which involve other speakers are available: they
can be used to compute statistics for score normalization,
or to increase impostor accesses for discriminative training.
The validation corpus consists in 7062 trials that involve
181 target speaker and 368 test sequences. After having
tuned the system to perform as well as possible on the val-
idation set, NIST SRE 2005 is used to measuring the ac-
tual Detection Cost Function (DCF). This criterion to min-
imize is a weighted sum of False Rejection and False Alarm
rates: DCF = 0.1FR% + 0.99FA%. We insist on the fact
that development, validation and evaluation involve non-
overlapping sets of speakers.

We employed a classical front-end processing for speaker
verification. To extract acoustic vectors from a speech se-
quence, 12 MFCC and their first order time derivatives are
extracted on 16ms window, at a 10ms frame rate. The
derivative of the energy logarithm is also added. Then, a
speech activity detector discards silence frames, using an
unsupervised bi-Gaussian modeling on the energy level. Fi-
nally, the 25-dimensional input vectors are normalized by
feature warping [10] over 3 seconds windows.

3.2. Implementation of the different systems

The baseline UBM-GMM system is based on the Alize speaker
verification software [1]. The front-end processing of this

generative system is a bit different from the one we use for
the SVM systems, since the optimal settings for the two
types of systems are different. The cepstral features ex-
tracted from the speech signal are also MFCC but are nor-
malized differently: instead of the feature warping, we use a
mean/variance normalization on the sequence (so that each
vector component to has a zero mean unit variance on the
sequence). We also used 2048 components in the GMMs
with variance flooring during training, as well as 10-best
scoring with T-Norm. As for the SVM systems, we im-
plemented the GLDS system using the algorithm described
in [2]. For the FSNS and the other systems (Fisher and
Correlation), we refer to [8] and [7] respectively for further
details. For the GMM-supervectors system, the observa-
tions sequence of each utterance, in train and test, is used
to estimate its corresponding GMM density. This is done
by MAP (Maximum A Posteriori) adaptation of the initial
UBM-GMM. Then the parameters of this adapted GMM
are used to build the supervector (1) which is then used as
input to the SVM classifier.

3.3. Evaluation

The individual performances of each system are displayed
in Fig.1. We first note that the FSNS kernel, which is an
extension of the GLDS kernel, leads indeed to better perfor-
mances than GLDS. We also mention that we compared the
GLDS system (with degree q = 3) with the FSNS one using
the polynomial k(x,y) = (1 + x · y)3 as the vector kernel,
we obtained the same performances. This shows that our
extension is not only theoretically sound, but practically
also. Moreover, the results show that FSNS yields similar
performances to the conventional UBM-GMM system while
it does not exploit any generative probabilistic modeling.

Second, it is clear from the results that the GMM-
supervectors system significantly outperforms all the others.
This comes to confirm that exploiting generative modeling
in a discriminative framework can be very beneficial. It is
also clear that the GLDS, Fisher and Correlation systems
yield relatively poor performances as compared to the oth-
ers. We can not however conclude in a strict manner that
they are always less performing than the others. We can
not indeed claim that we implemented all the systems in
the best/optimal way. We can however say that we tried to
be as close as possible to state-of-the-art literature.

Most of the best performing systems in NIST’SRE cam-
paigns are fusion of two or more systems. We thus tested
all possible fusion combinations between the systems we im-
plemented. The fusion we used is a linear combination of
output scores where the weight parameters are set so as
to minimize the DCF on the validation set. Improvement
with such a simple fusion has been previously observed in
speaker verification [2].

The only fusion that led to a non-negligible improve-
ment is the one between the FSNS and GMM-supervectors
systems and is depicted in Fig.2. In particular, the fusion of
the UBM-GMM and the GMM-supervectors systems does
not improve the performance. This is not surprising, in our
opinion, given that both share the same “global” informa-
tion for classification, that is the MAP adapted GMMs. On
the opposite the fusion of the FSNS and GMM-supervectors
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significantly improve the performance (particularly in term
of DCF), which suggests that the two systems use com-
plementary classification information. It is thus worth to
continue the exploration of FSNS kernels in order to better
exploit their discriminative potential and their complemen-
tarity with GMM-based systems1.

DET plot (NIST 2005)

DCF(x10−3)
EER(%) min actual

(1) 10.40 37.4 37.7
(2) 12.06 40.5 40.6
(3) 11.91 41.4 41.6
(4) 11.90 42.5 44.0
(5) 12.54 48.5 48.8
(6) 13.92 50.5 52.1

Fig. 1. Performances of the SVM systems and UBM-GMM
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