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ABSTRACT

This article presents several techniques to combine between Support
vector machines (SVM) and Joint Factor Analysis (JFA) model for
speaker verification. In this combination, the SVMs are applied to
different sources of information produced by the JFA. These infor-
mations are the Gaussian Mixture Model supervectors and speakers
and Common factors. We found that using SVM in JFA factors gave
the best results especially when within class covariance normaliza-
tion method is applied in order to compensate for the channel effect.
The new combination results are comparable to other classical JFA
scoring techniques.

Index Terms— Joint Factor Analysis, Support Vector Machine,
Speaker factors space, Within Class Covariance Normalization.

1. INTRODUCTION

Over the last three years, the Joint Factor Analysis (JFA) [1] ap-
proach has become the state of the art in the speaker verification
field. This modeling was proposed in order to deal with the speaker
and channel variabilities in the Gaussian Mixture Models (GMM)
[2] framework.

During the same period, the application of the Support Vector
Machine (SVM) in GMM supervector space [3] also led to interest-
ing results, especially when the Nuisance Attribute Projection (NAP)
was applied to deal with the channel effect. In this approach, the
kernel is based on a linear approximation of the Kullback Leibler
(KL) distance between two GMMs. The speaker GMMmeans super-
vectors were obtained by adapting the Universal Background Model
(UBM) supervector to speaker frames using Maximum A Posterior
(MAP) adaptation [2].

In this paper, we propose to combine the SVM with JFA. We
tried two types of combinations; the first one uses the GMM super-
vector obtained with JFA as input to the SVM using the classical
linear KL kernel between two supervectors. The second, rather than
using the GMM supervectors as features for the SVM, directly uses
the information given by the speaker and common factors compo-
nents (see section 2) defined by the JFA model.

The outline of the paper is as follows. Section 2 describes the
factor analysis model. In section 3, we present the JFA-SVM ap-
proach and we describe all the kernels used to implement it. The

comparison between different results is presented in section 5. Sec-
tion 6 concludes the paper.

2. JOINT FACTOR ANALYSIS

Joint factor analysis is a model used to treat the problem of speaker
and session variability in GMM’s. In this model, each speaker is
represented by the means, covariances, and weights of a mixture
of C multivariate diagonal-covariance Gaussian densities defined in
some continuous feature space of dimension F . The GMM for a
target speaker is obtained by adapting the UBM means parameters
(UBM). In joint factor analysis [1, 4, 5], the basic assumption is that
a speaker and channel-dependent supervectorM can be decomposed
into a sum of two supervectors: a speaker supervector s and a chan-
nel supervector c

M = s + c (1)

where s and c are normally distributed.
In [1], Kenny et al. described how the speaker-dependent and

channel-dependent supervector can be represented in low dimen-
sional spaces. The first term in the right hand side of (1) is mod-
eled by assuming that if s is the speaker supervector for a randomly
chosen speaker then

s = m + dz + V y (2)

Where m is the speaker and channel independent supervector
(UBM), d is a diagonal matrix, V is a rectangular matrix of low
rank and y and z are independent random vectors having standard
normal distributions. In other words, s is assumed to be normally
distributed with mean m and covariance matrix V V t + d2. The
components of y and z are respectively the speaker and common
factors.

The channel-dependent supervector c, which represents the
channel effect in an utterance, is assumed to be distributed accord-
ing to

c = ux (3)

Where u is a rectangular matrix of low rank and x is a standard
normal distribution. This is equivalent to saying that c is normally
distributed with zero mean and covariance uut. The components of
x are the channel factors in factor analysis modeling.
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3. SVM-JFA

The SVM is a classifier used to find a separator between two classes.
The main idea of this classifier is to project the input vectors into
a high dimension space called feature space in order to find linear
separation. This projection is carried out using a mapping function.
In practice, SVMs use kernel functions to perform the scalar product
computation in the feature space. These functions allow us to com-
pute directly the scalar product in the feature space without defining
the mapping function.

In this section, we will present several ways to carry out the
combination between the SVM and JFA. The first approach is sim-
ilar to the classical SVM-GMM [3, 6] when the speaker GMM su-
pervectors are used as input to SVM. We have tested a second set
of methods based on a new kernel that uses i) spekaer factors or ii)
speaker and common factors, depending on the configuration of the
JFA model.

3.1. GMM Supervector space

In order to apply SVM with JFA using speaker supervector as input,
we used the classical linear Kullback- Leibler kernel. This kernel
applied in GMM supervector space is based on Kullback-Leibler di-
vergence between two GMMs [3]. This distance corresponds to the
Euclidean distance between scaled GMM supervectors s and s′.
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where wi and Σi are the ith UBMmixture weights and diagonal co-
variance matrix, si corresponds to the mean of Gaussian i of the
speaker GMM. The derived linear kernel is defined as the corre-
sponding inner product of the preceding distance
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This kernel was proposed by Campbell et al. [3].

3.2. Speaker factors space

In this section, we discuss the use of speaker factors as parameters
input to SVM. The speaker factor coefficients correspond to speaker
coordinates in the speaker space defined by the eigenvoices matrix.
The advantage of using speaker factors is that these vectors are of
low dimensions (typically dimension = 300), making the decision
process faster. We tested these vectors with three classical kernels
which are linear, Gaussian and cosine kernels. These kernels are
respectively given by the following equations:

k(y1, y2) = 〈y1, y2〉 (6)

k(y1, y2) = exp

„
− 1

2.σ2
‖y1 − y2‖2

«
(7)

k(y1, y2) =
〈y1, y2〉
‖y1‖ ‖y2‖ (8)

The motivation of using the linear kernel is that the speaker factor
vectors are normally distributed with zero mean and identity vari-
ance matrix. In order to obtain the speaker factors for this system,
we used the JFA configuration which contains the speaker and chan-
nel factors only. There are no common factors z (see equation 2).

3.2.1. Within Class Covariance Normalization

In this new approach, we propose to apply another channel compen-
sation step in the speaker factors space. The first step is carried out
by estimating the channel factors in GMM supervector space. To
achieve this compensation, two choices are possible. The first one is
the NAP [3] algorithm and the second is theWithin Class Covariance
Normalization algorithm (WCCN) [7]. We decided to apply WCCN
algorithm rather than NAP because NAP algorithm realizes chan-
nel compensation by removing the nuisance directions; however the
speaker factors are vectors of low dimension so removing additional
directions could be harmful.

The WCCN algorithm uses the Within Class Covariance (WCC)
matrix to normalize the kernel functions in order to compensate for
the channel factor without removing any directions in the space.
WCC matrix is obtained by the following formula:
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i is mean of speaker factors vectors of each
speaker, S is the number of speaker and ns is number of utterances
for each speaker s.

The WCCN algorithm was applied to the linear and cosine ker-
nels. The new versions of the two previous kernels are given by the
following equations:
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3.3. Speaker and Common factors space

When the speaker and common factors are available, we propose and
compare two techniques that combine these two sources of informa-
tion. The first approach applies SVM in each space (speaker factors
space and common factors space). Thereafter we linearly combine
these two SVMs scores. The fusion weights are obtained by using a
logistic regression [8]. The second approach is to define a new ker-
nel which is the linear combination of two kernels. The first kernel
is applied in the speaker factors space while the second kernel is ap-
plied in the common factors space. The kernel combination weights
are chosen to maximize the margin between target speaker and im-
postors utterances. This technique was already applied in speaker
verification [9].

4. EXPERIMENTAL SETUP

4.1. Test set

The results of our experiments are reported in the core condition of
the NIST 2006 speaker recognition evaluation (SRE) dataset [10].
For score fusion system case, the weights were trained on the NIST
2006 SRE dataset. The systems were tested on the telephone data of
the core condition of the NIST 2008 SRE.

4.2. Acoustic features

In our experiments, we used cepstral features extracted using a 25ms

Hamming window. 19 mel frequency cepstral coefficients together
with log energy are calculated every 10ms. This 20-dimensional
feature vector was subjected to feature warping [11] using a 3s slid-
ing window. Delta and double delta coefficients were then calculated
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Table 1. Comparison results between SVM-JFA in GMM supervec-
tors space and JFA frame by frame scoring. The results are given on
EER in the core condition of the NIST 2006 SRE.

System English All trials
JFA: s = m + V y 1.95% 3.01%
JFA: s = m + V y + dz 1.80% 2.96%
SVM-JFA: s = m + V y 4.24% 4.98%
SVM-JFA: s = m + V y + dz 4.23% 4.92%

using a 5 frame window corresponding to a 60-dimensional feature
vectors. These feature vectors were modeled using GMM and factor
analysis was used to treat the problem of speaker and session vari-
ability.

4.3. Factor analysis training

We used gender independent Universal Background Models which
contains 2048 Gaussians. This UBM was trained using LDC re-
leases of Switchboard II, Phases 2 and 3; switchboard Cellular, Parts
1 and 2 and NIST 2004-2005 SRE. The (gender independent) factor
analysis models were trained on the same quantities of data as the
UBM.

The decision scores obtained with the factor analysis were nor-
malized using zt-norm normalization. We used 148 male and 221
female t-norm models and 159 male and 201 female z-norm utter-
ances.

We used two factor analysis configurations. The first JFA used
restricted configuration composed only with 300 speaker factors and
100 channel factors and the second one was a full JFA configura-
tion; we added the diagonal matrix (d) in order to have speaker and
common factors.

4.4. SVM impostors

We used 1875 gender independent impostors to train the SVM
model. These impostors are taken from LDC releases of Switch-
board II, Phases 2 and 3; switchboard Cellular, Parts 1 and 2 and
NIST 2004-2005 SRE.

4.5. Within Class Covariance

We used a gender independent within class covariance matrix which
is trained in the same dataset as the JFA training.

5. RESULTS

5.1. SVM-JFA: GMM supervector space

We start with the results obtained by the combination SVM-JFA
when the GMM supervectors are used as input to the SVM. We used
GMM supervector obtained using both JFA configurations (with or
without Common factors). The results are given in Table 1. These
results are compared to the frame by frame JFA scoring techniques.

The results show that the performances of the application of the
SVM in the GMM supervector space are significantly worse than
these obtained by the conventional frame by frame JFA scoring.
These results can be explained by the fact that the linear KL ker-
nel is not appropriate for GMM supervectors obtained by the JFA
model because the assumption of independence of GMM Gaussians

Table 2. Comparison results between SVM-JFA in speaker factor
space and GMM supervectors space. The Results are given on EER
in the core condition of the NIST 2006 SRE.

English All trials
No-norm T-norm No-norm T-norm

KL-kernel: GMM
supervectors

- 4.24% - 4.98%

Linear kernel 3.47% 2.93% 4.64% 4.04%
Gaussian kernel 3.03% 2.98% 4.59% 4.46%
Cosine kernel 3.08% 2.92% 4.18% 4.15%

Table 3. Comparison results between SVM-JFA in speaker factor
space (with and without WCCN) with two JFA scoring techniques.
The results are given on EER in the core condition of the NIST 2006
SRE, English trials.

Without WCCN With WCCN
t-norm zt-norm t-norm zt-norm

Linear kernel 2.93% - 2.44% -
Cosine kernel 2.92% - 2.43% -
JFA frame by frame
scoring

2.81% 1.95% - -

in the case of MAP adaptation is not true for the adaptation based
on eigenvoices. The results show also that the addition of common
factors didn’t improve the results in the case of SVM-JFA compared
to the JFA scoring.

5.2. SVM-JFA: speaker factors space

This section present the results obtained with the linear, Gaussian
and cosine kernels applied in speaker factors space. We compare
these new results with the last one using the SVM- JFA applied in
GMM supervectors. Table 2 gives these results.

Three remarks are in order in Table 2. The first one is that the
application of the SVM in speaker factors space gave better results
than applied SVM in GMM supervectors space. The second is that
there is marked linear separation between the speakers if we compare
the results between cosine and Gaussian kernel. The last remark
is that t-norm did not yield a large improvement in the case of the
cosine and Gaussian kernels, however it helps in the case of the linear
kernel.

5.2.1. Within Class Covariance Normalization

We will now discuss the performance achieved with or without the
WCCN technique in the case of linear and cosine kernels. Table 3
compares the results obtained with and without WCCN to the results
given by frame by frame joint factor analysis scoring.

The results given in Table 3 show that with WCCN, we achieve
17% relative improvements in both kernels. We can see also that the
performances obtained with WCCN are very comparable to the JFA
scoring. However the advantage of using this new SVM-JFA scoring
is that it is more faster than the claasical JFA scoring in the context
of NIST speaker recognition evaluation.
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Table 4. Comparison results between score fusion and kernels com-
bination for SVM-JFA system.

NIST 2006 SRE NIST 2008 SRE
English All trials English All trials

Cosine kernel on y 2.34% 3.59% 3.86% 6.55%
Cosine kernel on z 6.26% 8.68% 10.34% 13.45%
Linear score fusion 2.11% 3.62% 3.23% 6.86%
Kernel combination 2.08% 3.62% 3.20% 6.60%
JFA frame by 1.80% 2.96% - -
frame Scoring
JFA integrate 1.78% 2.90% - -
over channel factors
JFA LPT assumption 2.70% 3.98% - -

5.3. SVM-JFA: speaker and common factors space

We present a comparison between results obtained with score fusion
and kernel combination applied in the speaker and common factors.
In both fusion techniques, we applied cosine kernel in speaker and
common factors space. We used also WCCN in order to normalize
the speaker factors cosine kernel. The results are given in Table 4.

By examining these results, we can conclude that both fusion
methods yield equivalent results. However, the use of the kernel
combination is more appropriate because we don’t need develop-
ment data to set the kernel weights. The results reported in Table 4
using score fusion on NIST 2006 SRE are not realistic because we
trained and tested the score fusion weights on the same dataset.

We also note that the common factor components give comple-
mentary information to speaker factor components and the combi-
nation between them improves the performance. If we compare our
results obtained by the kernel combination method and the other JFA
scoring methods, we can seen that the SVM-JFA gives better results
than the LPT assumption scoring defined in [12] and closer results
to classical frame by frame JFA and integrating over channel factors
[4] scorings.

6. CONCLUSION

In this paper, we tested several combinations between discrimina-
tive model which is Support vector machine and generative model
which is Joint Factor analysis for speaker verification. We found
that using linear or cosine kernel defined in speaker and Common
factors which are the components of the JFA gave better results than
using linear Kullback Leibler kernel applied in GMM supervectors
obtained also with JFA model. We proved that using within class co-
variance normalization in speaker space in order to compensate for
the channel effect gave the best performances. The results obtained
with SVM-JFA using the speaker factors were comparable to the re-
sults obtained with classical JFA scoring. However the advantage
of using the SVM in speaker factors space (usally dimension 300)
makes the scoring faster than others classical techniques.
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