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ABSTRACT

In this paper, we study speaker characterization using prosodic

supervectors with negative within-class covariance normal-

ization (NWCCN) projection and speaker modeling with sup-

port vector regression (SVR). We also propose a segmental

weight fusion (SWF) technique that combines acoustic and

prosodic subsystems effectively, despite the big performance

gap between the subsystems. We validate the effectiveness of

our proposed techniques on the NIST 2006 Speaker Recog-

nition Evaluation (SRE) in comparison with other prominent

solutions. The experiments have reported competitive results

of 17.72% Equal Error Rate for the prosodic subsystem alone

and 4.50% for the fusion system on NIST 2006 SRE core test

condition.

Index Terms— Negative within-class covariance normal-

ization, Support vector regression, Segmental weight fusion.

1. INTRODUCTION

One of the fundamental issues in speaker recognition is to

characterize speakers by discriminative cues. The cues, vary-

ing from low level acoustic features to high level prosodic

features, reflect different aspects of speaker characteristics.

Another issue is how to effective organize and combine the

speaker cues in the speaker recognition system design for the

best performance. It has been proved that fusion of multiple

sources of information will boosts the performance of speaker

recognition.

Significant improvements have been achieved through ex-

ploiting the acoustic features representing the temporal prop-

erties of speech spectrum, such as Gaussian mixture mod-

eling based on universal backgrouond model (GMM-UBM)

[1], generalized linear discriminant sequence (GLDS) ker-

nel by expanding acoustic features using a monomial basis

[2], support vector machine modeling on GMM supervectors

(GMM-SVM) [3], MLLR transforms as features for support
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vector machine modeling (MLLR-SVM) [4], and joint fac-

tor analysis (JFA) for compensating session and channel vari-

abilities [5]. In recent years, prosodic features [6][7][8] have

attracted much attention for their robustness to channel vari-

ability and their complementary advantage to the acoustic fea-

tures in speaker recognition.

There are two major challenges in applying prosodic fea-

tures in speaker recognition. One is the availability of training

data. Compared with acoustic features, prosodic features are

more easily affected by the size of training data. For exam-

ple, pitch, one of the important prosodic features, does not

exist in unvoiced region. Another challenge is how to make

good use of their complementary advantage in a fusion sys-

tem with both acoustic features and prosodic features, where

the recognition accuracy using prosodic features is generally

much lower than that using acoustic features. Improper score

fusion may not result in an improved performance over the

acoustic features.

In this paper, we propose a new strategy for modeling

prosodic features in speaker recognition by applying the nega-

tive within-class covariance normalization (NWCCN) on the

supervectors of prosodic features. The NWCCN is a varia-

tion of WCCN [9] which makes use of the negative data from

impostor speakers to estimate the expected within-class co-

variance matrix. We further apply support vector regression

(SVR) [10] to model the prosodic supervectors for better gen-

eralization and approximation.

We design a segmental weight fusion (SWF) algorithm to

effectively fuse both acoustic scores and prosodic scores. The

score fusion are deployed in three score regions to minimize

the errors separately. This fusion algorithm works well even

when there is big performance gap between the acoustic fea-

tures and prosodic features.

The paper is organized as follows. In Section 2, we intro-

duce the SVR-NWCCN modeling approach on the prosodic

supervectors. In Section 3, we present the segmental weight

fusion algorithm by combining both acoustic and prosodic

scores. The experimental results on the 2006 NIST Speaker

Recognition Evaluation (SRE) corpus are shown in Section 4.

Finally we conclude in Section 5.
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2. SVR-NWCCN MODELING FOR PITCH
FEATURES

The SVR-NWCCN (support vector regression - negative

within-class covariance normalization) approach includes

three major modules: prosodic feature extraction for prosodic

supervectors, NWCCN projection for channel and session

variability normalization, and SVR modeling for speaker

recognition.

2.1. Prosodic Feature Extraction

Six dimensional prosodic features are used in the speaker

recognition. They are log value of pitch, log value of en-

ergy, and their first and second order derivatives. The pitch is

extracted at every 25ms frames using the Praat toolkit [11].

Since the pitch values are estimated with the autocorrelation

method, they are not valid in unvoiced frames. We scale the

log pitch linearly into the range of [-1, 1]. To calculate the en-

ergies, the speech signals are further processed with RASTA

filtering, voice activity detection (VAD), utterance-based

cepstral mean subtraction (CMS), and short-time Gaussian-

ization [12]. The Gaussian mixture models are trained on the

6-dimension feature vectors and the means vectors of all the

mixture components compose the prosodic supervector.

2.2. NWCCN Projection

WCCN is a technique for training generalized linear kernels

that was recently introduced in [9], where W is the expected

within-class covariance matrix over all classes in the train-

ing data. Negative within-class covariance normalization

(NWCCN) is designed for the speaker modelling with limited

training data from the target speaker in the one-versus-all

classification while the dimensionality of the feature space of

supervectors is very high [9]. The negative samples from all

impostor speakers with the class (speaker) labels are used to

identify orthonormal directions in feature space.

With a set of negative prosodic supervectors, we define

the expected within-class covariance matrix in NWCCN pro-

jection as follows:

W = (1−λ){ΣM
i=1p(i)E{(Xi−X̄i)(Xi−X̄i)T }}+λI, (1)

where M is the number of negative classes, Xi is a random

vector from class i, X̄i is the expected value of Xi, p(i) is

the prior probability of class i, and λ ∈ [0, 1] is a smoothing

factor over an identity matrix.

Given the within-class covariance matrix, we make the

NWCCW projection on prosodic supervectors using the fol-

lowing transformation:

P (X) = UT X with W−1 = UUT . (2)

Since W is a full-rank matrix, there exists a Cholesky factor-

ization U of W−1.

NWCCN optimally weights each of orthonormal direc-

tions to minimize a particular upper bound on error rate [9].

It thus can maximize the speaker-relevant information that

is in the underlying feature space but is affected by channel

and session variability. Therefore, applying NWCCN to the

prosodic feature space will benefit the robustness and perfor-

mance of speaker recognition system.

2.3. SVR Modeling

There are two reasons why we adopt the support vector re-

gression (SVR) instead of SVM to model the prosodic super-

vectors. One is that the amount of training data available for

the target speaker is very limited and there always exist many

unvoiced frames in the utterance. In such case, we need a

more general approach to avoid the over-fitting, like SVR, to

train the speaker model. Another reason is that SVR aims to

find a good approximation of the features.

SVR aims to minimize a regularized error function [10]

given by:

C

N∑
n=1

Eε(y(Xn) − tn) +
1
2
‖ W ‖2

, (3)

where y(Xn) is the prediction of Xn and tn is the corre-

sponding target value in training data set. The quadratic error

function in SVM has been replaced by an ε−insensitive er-
ror function in SVR, which have a linear cost associated with

the errors outside the insensitive region. The introduced slack

variables allows points to lie outside the ε−tube provided the

slack variables are nonzero. It tolerates some degree of mis-

match by the use of an margin controlled by the ε parameter.

Therefore, SVR has a better generalization than SVM, and is

thus suitable for a prosodic speaker recognition system.

3. SEGMENTAL WEIGHT FUSION

The goal of a fusion method in speaker recognition is to prop-

erly combine the scores from multiple subsystems for com-

plementary effect. Given the fact that an individual subsys-

tem on acoustic features generally has a much better perfor-

mance than that on prosodic features, using a unique fusion

weight may not achieve the fusion target which is to improve

the speaker recognition performance with the complementary

advantage of prosodic features.

To make better use of the discriminative cue of prosodic

features, we conduct the score fusion separately in different

score regions, using a segmental weight fusion (SWF) strat-

egy. The fusion weights are estimated on the development

data set, and applied on evaluation data accordingly. The two

pre-processing steps before the score fusion are as follows:

• Score region partition. Assume Amin and Amax are the

minimum and maximum acoustic scores in the devel-

opment data set. Two Gaussian distributions, shown in
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Fig.1 are constructed using the scores of target speak-

ers and impostor speakers, respectively. All the score

values are divided into three regions, Q1, Q2, and Q3,

by two thresholds, Th1 as the minimum score value of

target speakers and Th2 as the maximum score value

of impostor speakers. Each of the three score region

represents a unique score characteristics, and should be

handled differently in the score fusion. For example,

Q2 is the most confusable region in speaker recogni-

tion.

Q 1 

Q 2 

Q 3 

Amin AmaxTh1 Th2 

Fig. 1. Score segments in target/impostor score distributions

• Score scaling. As the acoustic scores and prosodic

scores may have a different dynamic ranges, we con-

duct a linear transformation on prosodic scores for

scaling as follows:

{
κP r

min + ρ = Ar
min

κP r
max + ρ = Ar

max
⇒ κ , ρ

⇒ P̄ = κP + ρ
(4)

The score transformation are made in each of the three

regions independently by training the three sets of pa-

rameters κ, ρ. P r
min, P r

max, Ar
min, and Ar

max represent

the region-dependent minimum and maximum values

of prosodic and acoustic scores. P̄ and P denotes the

scaled and original prosodic scores.

As shown in Fig. 1, the decision threshold should be in the

interval [Th1, Th2] after the score fusion, in order to obtain

the minimum detection cost. If the score of a test trial lies

in the region Q1, this trial will be classified as non-target.

Therefore, we use the following formula to train the fusion

weight by minimum PMiss|Target given threshold Th1 .

{
(1 − α)AQ1 + αP̄Q1 = FQ1

min{PMiss|Target} , threshold = Th1 (5)

In contrary to region Q1, we apply the following formula to

train the fusion weight by minimum PFalseAlarm|NonTarget

given threshold Th2 for the region Q3.

⎧⎨
⎩

(1 − β)AQ3 + βP̄Q3 = FQ3

min{PFalseAlarm|NonTarget} ,
threshold = Th2

(6)

The region Q2 is the most confusable region for the speaker

recognition decision. The fusion weight is trained by mini-

mizing the equal error rate (EER):

{
(1 − γ)AQ2 + γP̄Q2 = FQ2

min{EER} (7)

In the above three formulas, α, β, γ ∈ [0, 1], AQ∗ , P̄Q∗ , and

FQ∗ represent the acoustic score, transformed prosodic score

and the final fused score.

4. EXPERIMENTS

In the following experiments, we will show the advantages

with the proposed SVR-NWCCN approach for modeling

prosodic features in speaker recognition, and compare the

fusion strategies using the common equal weight, LLR and

the proposed SWF methods for combining the acoustic and

prosodic scores. All the results in this section are without

score normalization, such as Tnorm and Znorm.

4.1. Experiment Setup

The speaker recognition experiments are conducted on the

core test condition of the 2006 NIST Speaker Recognition

Evaluation (SRE) corpus with 51448 test trails. Each trial

contains about 2.5 minutes of speech. The speech data from

the core test condition of the 2004 NIST SRE corpus are

used as the development set, for tuning the smooth factor of

NWCCN and the parameters of score fusion. The speech data

from 2004/2005 NIST SRE corpus and Switchboard are used

as negative samples and as the training set for Nuisance At-

tribute Projection (NAP) [3] on the supervectors of acoustic

features.

EER and minDCF (minimum decision cost function)

are adopted to measure the performance. Both the prosodic

GMM and acoustic GMM are gender-dependent, with 64

Gaussian mixture components on the 6-dimension prosodic

features and 512 Gaussian mixture components on the 39-

dimension MFCC features. The smooth factor of the pro-

posed SVR-NWCCN system is estimated using cross valida-

tion is set to 0.3.

4.2. Experiment Results

Table 1 shows the experimental results of four speaker recog-

nition systems based on prosodic features. They are basic

GMM-UBM system, GMM-SVM with SVM modeling on

the prosodic supervectors, GMM-SVR with SVR modeling

on the prosodic supervectors, and SVR-NWCCN with SVR

modeling on the NWCCN projection. It is shown that both

SVR modeling and NWCCN projection can improve the

speaker recognition performance on prosodic features. The

SVR-NWCCN obtains an EER of 17.72% which is a compet-

itive result compared with recently reported prosodic feature

systems on the same task [13].
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Table 1. Performances comparison of four prosodic systems

Prosodic system EER minDCF

GMM-UBM 30.61% 9.98%

GMM-SVM 20.40% 7.52%

GMM-SVR 19.80% 7.47%

SVR-NWCCN 17.72% 7.13%

Table 2 shows the speaker recognition results of two sep-

arate systems with acoustic and prosodic features, as well

as two fusion systems with different fusion strategies. The

acoustic system is GMM-SVM based on MFCC features with

NAP for channel and session compensation. The prosodic

system is the SVR-NWCCN mentioned in Table 1. The two

fusion strategies are fusion two systems with equal weight,

and the proposed segmental weight fusion (SWF). The results

show that the prosodic features help to improve the speaker

recognition performance of fusion system when the correct

fusion strategy is used. A relative 12.28% improvement is

achieved over the acoustic system based on SWF. On the con-

trary, using the LLR fusion method 1 with a unique weight,

the prosodic features do not give us effective complementary

contribution because the estimated weight for the prosodic

features is near to zero. Meanwhile, fusion strategy with a

equal weight, shown in the Table 2, does not work well either

due to the big performance gap between the acoustic and

prosodic system.

Table 2. Performance comparison of two fusion strategies

System EER minDCF

Acoustic GMM-SVM-NAP 5.13% 2.31%

Prosodic SVR-NWCCN 17.72% 7.13%

Fusion-Equal Weight 7.12% 3.25%

Fusion-SWF 4.50% 2.08%

In Fusion-SWF, the weights of three regions are trained

on the 2004 NIST SRE corpus, and applied to 2006 NIST

SRE evaluation task. It is interesting to find that the best

fusion result is obtained at α = 0, β = 0, γ = 0.6. In

the regions Q1 and Q3, Acoustic GMM-SVM-NAP system

gives much higher recognition accuracy than Prosodic SVR-

NWCCN system. The prosodic features can not help in the

fusion system. In region Q2, prosodic features has shown a

great complementary advantage to acoustic features.

5. CONCLUSION

In this paper, we propose a new strategy to effectively ex-

ploit prosodic features for speaker recognition. The nega-

tive within-class covariance normalization provides a robust

representation for prosodic features and the support vector

regression helps to achieve good generalization and approxi-

mation in speaker modelling. It is expected to obtain a better

performance by involving more prosodic features besides

1http://www.dsp.sun.ac.za/nbrummer/focal/index.htm

pitch and energy. The proposed segmental weight fusion

strategy has shown to be able to effectively combine the

acoustic and prosodic informations in different score regions

for a reliable fusion system.
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