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ABSTRACT

Gaussian mixture model (GMM) supervector is one of the

effective techniques in text independent speaker recognition.

In our previous work, we introduce the GMM-UBM mean in-

terval (GUMI) concept based on the Bhattacharyya distance.

Subsequently GUMI kernel was successfully used in conjunc-

tion with support vector machine (SVM) for speaker recogni-

tion. Besides the first order statistics, it is generally believed

that speaker cues are also partly conveyed by second order

statistics. In this paper, we extend the Bhattacharyya-based

SVM kernel by constructing the supervector with the mean

statistical vector and the covariance statistical vector. Com-

paring with the Kullback-Leibler (KL) kernel, we demon-

strate the effectiveness of the new kernel on the 2006 National

Institute of Standards and Technology (NIST) speaker recog-

nition evaluation (SRE) dataset.

Index Terms— Gaussian Mixture Model, Support Vector

Machine, Supervector, Speaker Verification, NIST Evaluation

1. INTRODUCTION

Speaker recognition is usually formulated as a hypothesis

test that verifies an identity claim by estimating the similarity

of the claimant’s speech and the enrolled utterance(s). In

text-independent speaker verification, both Gaussian mixture

model (GMM) and support vector machine have been proven

to be effective and most popularly used for many years.

In [1], Campbell et al. constructed an SVM kernel using

the GMM supervector that is formed by using the parameters

of GMM. They derive an SVM kernel based on KL diver-

gence between two GMMs. However, only the adapted means

are considered while some information carried by covariance

is ignored. This kernel is also suitable for language recogni-

tion. In [2], the kernel is extended by using the symmetrized

version of the KL divergence for language recognition. As a

result, the covariance term can be introduced into the kernel.

In other words, the extended KL-based kernel measures the

similarity in terms of mean and covariance.

The Bhattacharyya distance [3] has been noticed to have

several applications in classical statistics, it turns out to give

better results than the divergence. In our recent study [4],

we introduced a mean interval concept based on the Bhat-

tacharyya distance. Consequently, we proposed a core dis-

tance measurement for the similarity and derive a kernel with

GMM-UBM mean interval (GUMI) supervector. In GMM,

covariance is estimated for the purpose of carrying some use-

ful information about speaker. It is reasonable to infer that

the covariance term in the derived Bhattacharyya distance of

two GMMs may reveal some underlaying speaker informa-

tion. Based on the above motivation, in this paper, we ex-

tend the GUMI concept to include not only the Bhattacharyya

mean statistical term but also the covariance term. We give

the derivation of the new kernel based on the Bhattacharyya

distance.

We compare the proposed kernel with the conventional

linear KL kernel under exactly same experimental conditions

and follows the testing task conducted by NIST SRE 2006

evaluation. In the performance evaluation, we also apply the

strictly same implementation procedure of nuisance attribute

projection (NAP) for both conventional and proposed kernels.

The NAP is done by removing the nuisance subspace from the

GMM supervector by projection. Through the experiments, it

is observed that the proposed kernel has a consistently supe-

rior performance over the conventional KL kernel in terms

of equal error rate (EER), minimum detection cost function

(minDCF) and detection error trade-off (DET). In the remain-

der of the paper, we introduce the conventional KL kernel in

section 2. We propose the Bhattacharyya based kernel for

GMM-supervector SVM in section 3. The performance eval-

uation is shown in section 4. Finally we summarize the paper

and give a discussion in section 5.

2. CONVENTIONAL GMM-SVM SYSTEM

2.1. KL Divergence Kernel

GMM-supervector SVM combines both generative and dis-

criminative methods and leads to the generative SVM ker-

nels based on the probability distribution estimation. Re-

cently, GMM-supervector kernel [1] becomes state-of-the-art

approach in speaker recognition. In conventional GMM-

supervector SVM system, KL divergence is used to measure

the distance of the two GMMs. The KL divergence between

4221978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



the two distributions with probability density pa and pb is

given by

Ψ
KL

(pa||pb) =
∫

Rn

pa(x) log
(pa(x)

pb(x)

)
dx. (1)

With the definition in (1), the KL divergence for two Gaussian

probability distributions is obtained by

Ψ
KL

(f(m(a)
i , Σ(a)

i )||f(m(b)
i ,Σ(b)

i ))

=
1
2
{

ln(
|Σ(b)

i |
|Σ(a)

i | ) + tr((Σ(b)
i )−1Σ(a)

i )

+ (m(b)
i − m(a)

i )T (Σ(b)
i )−1(m(b)

i − m(a)
i ) − D

}
(2)

where mi and Σi denote the respective mean and covariance

of the i-th Gaussian component of the GMM a or b; and f
represents the Gaussian distribution function. Since the KL

divergence does not satisfy the Mercer condition, for GMM

distribution, unchange of the weight should be assumed, i.e.

ω(u)
i = ω(a)

i = ω(b)
i , where u denotes UBM. On the other

side, an approximation for two GMM distance is considered

by bounding the divergence with the log-sum inequality

Ψ
KL

(pa||pb) ≤
M∑
i=1

Ψ
KL

(pai
||pbi

)

=
M∑
i=1

Ψ
KL

(ω(u)
i f(m(a)

i , Σ(a)
i )||ω(u)

i f(m(b)
i , Σ(b)

i ))

=
M∑
i=1

ω(u)
i Ψ

KL
(f(m(a)

i , Σ(a)
i )||f(m(b)

i ,Σ(b)
i ))

(3)

where M is the number of Gaussian components in the GMM.

With the assumption that the covariance adaptation can be ig-

nored, i.e. Σ(u)
i = Σ(a)

i = Σ(b)
i , the linear kernel function can

be given as follows [5]

K
KL

(Xa,Xb)

=
M∑
i=1

(
√

ω(u)
i (Σ(u)

i )−
1
2 m(a)

i )T (
√

ω(u)
i (Σ(u)

i )−
1
2 m(b)

i )
(4)

where Xa and Xb denote the respective feature vector se-

quences of utterances a and b.

2.2. A Covariance KL Kernel

Although the KL divergence can be used to represent the dif-

ference between two probability distributions, it is neither

positive definite nor symmetric, so that it cannot be straight-

forwardly used for a kernel. In [2], the KL kernel is extended

to introduce the covariance term by using the symmetrized

version of the KL divergence. In other words, the extended

KL kernel contains two terms, i.e., mean vector term and co-

variance term

K
extKL

(Xa,Xb)

=
M∑
i=1

(
√

ω(u)
i (Σ(u)

i )−
1
2 m(a)

i )T (
√

ω(u)
i (Σ(u)

i )−
1
2 m(b)

i )

+
M∑
i=1

ω(u)
i

2
tr(Σ(a)

i (Σ(u)
i )−2Σ(b)

i )

(5)

where tr(·) denotes the trace of matrix.

3. PROPOSED BHATTACHARYYA-BASED
GMM-SVM KERNEL

3.1. The Bhattacharyya Distance of Two GMMs

The Bhattacharyya kernel (or Bhattacharyya coefficient) [3]

[6] for two probability distributions is defined by

Λ
Bhatt

(pa||pb) =
∫

Rn

√
pa(x)

√
pb(x) dx (6)

and the Bhattacharyya distance of the two probability distri-

butions is defined by

Ψ
Bhatt

(pa||pb) = − ln(Λ
Bhatt

(pa||pb)). (7)

Let pa and pb denote the two probability distributions of

GMMa and GMMb. The Bhattacharyya distance for the two

GMMs are given by

Ψ
Bhatt

(pa||pb)

= − ln
( ∫

Rn

√√√√ M∑
i=1

pai
(x)

√√√√ M∑
j=1

pbj
(x) dx

) (8)

where pai = ω(a)
i f(x|m(a)

i , Σ(a)
i ) and pbj = ω(b)

j f(x|m(b)
j , Σ(b)

j ).
The Bhattacharyya distance between the i-th Gauss of GMMa

and the corresponding one of GMMb is obtained

Ψ
Bhatt

(pai
||pbi

)

= − ln
[ ∫

Rn

√
ω(a)

i f(x|m(a)
i , Σ(a)

i )
√

ω(b)
i f(x|m(b)

i , Σ(b)
i ) dx

]

=
1
8
(m(b)

i − m(a)
i )T

[Σ(a)
i + Σ(b)

i

2

]−1

(m(b)
i − m(a)

i )

+
1
2

ln
|Σ

(a)
i +Σ(b)

i

2 |√
|Σ(a)

i ||Σ(b)
i |

− 1
2

ln(ω(a)
i ω(b)

i ).

(9)
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Bounding (8) with the log-sum inequality, we have

Ψ
Bhatt

(pa||pb)

= Ψ
Bhatt

(
[ M∑

i=1

pai

]||[
M∑
i=1

pbi
]
)

≤
M∑
i=1

Ψ
Bhatt

(pai
||pbi

)

=
1
8

M∑
i=1

{
(m(b)

i − m(a)
i )T

[Σ(a)
i + Σ(b)

i

2

]−1

(m(b)
i − m(a)

i )
}

+
1
2

M∑
i=1

[
ln

|Σ(a)
i +Σ(b)

i

2 |√
|Σ(a)

i ||Σ(b)
i |

]
+

1
2

M∑
i=1

ln
{(

ω(a)
i ω(b)

i

)−1}
.

(10)

3.2. GUMI Kernel

On the right hand side of (10), there are three terms. The first

term reflects the degree of mean statistical similarity; and the

second represents the degree of consistency of the covariance

matrices; the third term is the weighting factor. The first term

contains the most informative quantity to measure the simi-

larity of the two GMMs. In our previous work [4], we have

introduced the GUMI kernel. According to the first term, i.e.∑M
i=1

{
(m(b)

i − m(a)
i )T

[
Σ(a)

i +Σ(b)
i

2

]−1

(m(b)
i − m(a)

i )
}

, we de-

rived the GUMI kernel [4]

K
GUMI

(Xa,Xb) =
M∑
i=1

{[(Σ(a)
i + Σ(u)

i

2

)− 1
2
(m(a)

i − m(u)
i )

]T

[(Σ(b)
i + Σ(u)

i

2

)− 1
2
(m(b)

i − m(u)
i )

]}
.

(11)

3.3. The New Kernel with the Bhattacharyya Distance

From (10), the Bhattacharyya distance between the two

GMMs can be constrained as follows

Ψ̆
Bhatt

(pa||pb)

=
1
8

M∑
i=1

{
(m(b)

i − m(a)
i )T
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i

2
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}

+
1
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M∑
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(a)
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i

2 |√
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i |

]
− 1

2
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i=1

ln(ω(a)
i ω(b)

i )

≈ 1
8
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{
(m(b)

i − m(a)
i )T

[Σ(a)
i + Σ(b)

i

2

]−1

(m(b)
i − m(a)

i )
}

+
1
2

M∑
i=1

|Σ
(a)
i +Σ(b)

i

2 |√
|Σ(a)

i ||Σ(b)
i |

− M

2
+
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ln
{ 1√

ω(a)
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i

}

(12)

In (12), we use ln(x) ≈ x − 1, while x → 1. Since Σ(λ)
i

(λ represents a or b) is adapted from Σ(u)
i , thus

|Σ
(a)
i

+Σ(b)
i

2 |√
|Σ(a)

i ||Σ(b)
i |

approaches 1. As a result, ln |Σ
(a)
i

+Σ(b)
i

2 |√
|Σ(a)

i ||Σ(b)
i |

≈ |Σ
(a)
i

+Σ(b)
i

2 |√
|Σ(a)

i ||Σ(b)
i |

−
1. According to the GUMI analysis [4], we may reach an

approximation of the equation (12)

Ψ̆
Bhatt
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≈ 1
8
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{[(Σ(a)
i + Σ(u)

i

2
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2
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+
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2
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+
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(13)

Considering the first two terms of (13), we propose the kernel

as follows

K
Bhatt2

(Xa,Xb)

=
M∑
i=1

{[1
2

(Σ(a)
i + Σ(u)

i

2

)− 1
2
(m(a)

i − m(u)
i )

]T

[1
2

(Σ(b)
i + Σ(u)

i

2

)− 1
2
(m(b)

i − m(u)
i )

]}

+
M∑
i=1

tr
[(Σ(a)

i + Σ(u)
i

2

) 1
2
(Σ(a)

i )
− 1

2
(Σ(b)

i + Σ(u)
i

2

) 1
2
(Σ(b)

i )
− 1

2
]

(14)

In this case, the GMM supervector is the concatenation of the

mean statistical vector and the covariance vector. Apparently,

the kernel is an inner product of the two supervectors marked

by a and b. It satisfies the Mercer condition [7] and suitable

for SVM. The SVM is a two-class classifier making use of

hyperplane separator, which is estimated by maximizing the

distance between the hyperplane and the closest training vec-

tors, e.g. the GMM supervectors, which are called support

vectors.

4. PERFORMANCE EVALUATION

4.1. Evaluation Configuration

The performance evaluation is conducted on the NIST SRE

2006 core test, where 51448 trials are tested, which in-

cludes 3612 true trials and 47836 false trials. We carried

out gender-dependent speaker verification experimentation.

36-dimension linear predictive cepstral coefficient (LPCC)

feature and 512 Gaussian mixtures of GMM are selected.
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Fig. 1. Comparison of the GMM-Supervector SVM (GS-SVM) Systems

with different kernels by using gender-dependent testing for the 51448 tri-

als (including male and female) of NIST SRE-2006 1conv4w-1conv4w task.

‘extKL’ denotes the extended KL kernel by (5), and ‘Bhatt2’ denotes our

proposed Bhattacharyya-based kernel by (14).

Thus, the length of supervector for the conventional KL ker-

nel (refer to equation (4)) and the GUMI kernel (refer to

equation (11)) is 512 × 36 = 18432; while the length of

supervector for the extended KL kernel (refer to equation

(5)) and the proposed Bhattacharyya-based kernel (14) is

512 × 36 × 2 = 36864. The UBM is trained through EM

algorithm by using NIST 2004 1-side training database. The

GMM-supervector is obtained using MAP adaptation for

each utterance.

During the entire GMM-supervector performance evalua-

tion, the conventional KL kernel ((4), [1]), extended KL ker-

nel ((5), [2]), the GUMI kernel ((11), [4]) and the new pro-

posed Bhattacharyya-based kernel (14) are implemented in

the way to have exactly same training and testing conditions

such as feature extraction processing, feature enhancement,

background databases for both GMM and SVM, training and

testing databases, test-normalization (T-Norm) models, NAP

training database and its parameter configuration. The SRE

2005 are used as cohort models for T-Norm. For the case of

gender-dependent T-Norm, 271 NIST SRE 2005 models for

male and 362 models for female are used for the respective

male and female trials.

Fig. 1 plots the DET curves with different GMM-SVM

kernels where NIST 2004 training database used for the NAP

[8] and SVM background. Table 1 shows EERs and minimum

DCFs corresponding to the DET curves in Fig. 1. From the

experimental results, it is observed that the performance by

using the proposed kernel is better than those by using GUMI

kernel as well as the two conventional KL kernels.

In this paper, we only show the linear kernel compari-

son. The linear kernel is the scalar product of the supervec-

tors depending on the approximation of the KL divergence or

Bhattacharyya distance, whereas the nonlinear kernel could

be connected to an exponential function of the supervectors

according to the distance approximation. Actually, the GMM

supervector kernels reflected in (4), (5), (11) and (14) can be

extended to the nonlinear kernels. It would be an interesting

work to do further comparison for the nonlinear kernels.

Table 1. The comparison of the Equal Error Rates and minimum DCFs of

the various GMM-SVM kernels by using the 512-mixtures of GMM on the

SRE-2006 1conv4w-1conv4w evaluation, 51448 trials.

Gender-depend. EER & minDCF(x100)

SRE06 Core Test Raw-Score Score with S05
T-Norm

NAP + KL 6.45% & 3.31 5.51% & 2.69

NAP + extKL 6.31% & 3.35 5.57% & 2.82

NAP + GUMI 6.20% & 3.04 5.36% & 2.62

NAP + Bhatt2 5.95% & 2.95 5.12% & 2.48

5. SUMMARY AND DISCUSSION

In this paper, we apply the Bhattacharyya distance to measure

the similarity between two GMM distributions. We extend

the GUMI kernel to involve the covariance term and propose

a new Bhattacharyya-based kernel, which satisfies the Mer-

cer kernel condition. Therefore the SVM can be used in the

new kernel. The extended Bhattacharyya-based kernel gives

improvement as compared to the GUMI and the two conven-

tional KL kernels through experiment on the NIST SRE 2006

core testing task.
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