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ABSTRACT

From the results of the NIST speaker recognition evaluation in 
resent years, speaker recognition systems which are mainly 
developed based on English training data suffer the language gap 
problem, namely, the performance of non-English trails is much 
worse than that of English trails. This problem is addressed in this 
paper. Based on the conventional joint factor analysis model, we 
enrolled in the language factors which are mean to capture the 
language character of each testing and training speech utterance, 
and compensation was carried out by removing the language 
factors in order to shrink the difference between languages. 
Experiments on 2006 NIST SRE data show that, the language 
factor compensation alone can reduce the gap between the 
performance of English and non-English trails, and the score level 
combination with eigenchannels can further improve the 
performance of non-English trails, e.g., for female part, we 
observed about 19% relatively reduction in EER, when compared 
with eigenchannels session variability compensation alone.    

Index Terms— Speaker recognition, Joint Factor Analysis, 
Eigenchannels, Language Factor Compensation

1. INTRODUCTION 

In recent years, automatic speaker recognition has achieved great 
progress, partly driven by NIST speaker recognition evaluation, 
and also some new techniques which have been demonstrated 
effective on this task. Those techniques cover most important 
issues in speaker recognition, such as speaker modeling [1], 
session variability compensation [2, 3], system fusion [4] and 
discriminative model training [2, 5], etc.  One of the techniques 
which have successfully applied in the task is joint factor analysis 
outlined by Kenny, et al. [6], which combines relevance MAP, 
eigenvoices adaptation and eigenchannels session variability 
compensation into a unified framework.   

Although these improvements are remarkable, however, from 
the results of NIST speaker recognition evaluation in recent years, 
the language gap problem still troubles most speaker recognition 
systems, namely, the performance of non-English trails are much 
worse than that of English trails [7]. This threatens the robustness 
of recognition systems. The causes are manifold, such as different 
characteristics between languages themselves. But the main reason 
may lies in the fact that, the whole system is built up mainly based 
on English development data, and hence for non-English trails, 
there is a language mismatch which causes the performance 
degradation.

In most cases, collecting large amount data from various 
languages is a very difficult task, hence, this problem can not be 

solved easily by improving the development data’s coverage of 
languages. Based on the framework of joint factor analysis, in this 
paper, we investigated the probability of enrolling in a language 
factor in JFA model in order to capture the language character of 
training and testing utterances. Just like eigenvoices and 
eigenchannels, in this approach, a low dimensional subspace was 
estimated from a multi-language dataset, which describe the main 
directions of language variation, and the language factors 
compensation is carried out by removing from the utterances their 
attribute in this subspace.  

The reminder of the paper is organized as follows. Section 2 
generally describes joint factor analysis model for speaker 
verification, and in section 3, we discuss the language factors in 
JFA in detail. Experimental results are presented in section 4 and 
section 5 summarizes the paper as a conclusion. 

2. JOINT FACTOR ANALYSIS MODEL 

The factor analysis techniques outlined by Kenny, et al. [6] can be 
seen as an extension for conventional GMM-UBM approach, 
which joints the eigenvoices speaker modeling, eigenchannels 
variability compensation and relevance MAP adaptation into a 
unified framework. As such, a GMM supervector is decomposed 
into speaker- and session-dependent parts, which are treated as 
Gaussian distributed, respectively. The motivation behind this is to 
explicitly model and separate the speaker and session contributions.  

If we let F be the dimension of the acoustic feature vectors 
used, and as the total number of Gaussian mixture components, 
then a GMM mean supervector is dimensional, formed by 
concatenating the component means together, which can be 
expressed as

C
1CF

**
1 c , where c is the component mean. thc

For joint factor analysis, a speaker- and channel-dependent 
supervector M can be decomposed into a sum of two supervectors, 
namely, a speaker supervector s and a channel supervector c :

csM                                           (1) 
where s  and are statistically independent and normally 
distributed. The speaker-dependent GMM mean supervector can be 
represented by  

c

DzVyms                                    (2) 
In this model, m is a 1CF supervector which is speaker-
independent, representing the center of model space; V is a 
rectangular matrix of low rank and y is a normally distributed 
random vector; D is a CFCF diagonal matrix and z is a 
normally distributed CF -dimensional random vector. and are
commonly referred as eigenvoices and speaker factors, 
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respectively. It is assumed that the majority of speaker variation is 
contained within the low-rank speaker subspace defined by ,
while the role

*VV
Dz is mean to model the residual variability that is 

not captured by the speaker subspace.  
A similar expression is used to describe the channel-

dependent supervectors: 
Uxc                                            (3) 

where U  is a rectangular matrix of low rank which represents the 
main directions of session variation. The vector x is an estimate of 
the session conditions with the session subspace, and follows a 
standard normal distribution. Similar as the speaker subspace, is
often referred as eigenchannels and 

U
x as channel factors.  

3. LANGUAGE FACTORS IN JFA MODEL

In joint factor analysis model, a speaker's GMM mean supervector 
is separated into speaker- and session-dependent parts with the 
hope that each contribution can be estimated and modeled more 
explicitly. However, if the speaker subspace and session 
subspace are estimated mainly from English data, then the 
effectiveness of JFA on non-English trail testing is doubtful. In this 
section, we consider the case of adding a language factor in JFA 
model which mean to capture and compensate the language 
character of an utterance in order to handle the language mismatch 
problem.

*VV
*UU

3.1. Extend JFA model with language factors 

By involving a language factor, we can assume that the speaker 
subspace  and session subspace are language-
independent which can be estimated by a pure language data, and 
all the differences between languages can be captured by the 
language factors. In this case, a speaker's GMM mean supervector 
can be split as follows:

*VV *UU

UxDzVyBgmM                       (4) 
where is a speaker and language-independent supervector, is
low-rank rectangular transformation matrix, which captures the 
main directions of language variation. The vector 

m B

g is an 
estimation of language condition and is also standard normal 
distributed. For consistency, we refers the as language 
subspace and

*BB
g as the language factors.

3.2. Language subspace estimation 

As for the estimation of language subspace, the multi-language 
data should first remove their speaker and session attribute. This 
can adopt the procedure of decoupled estimation of D andV in [8]. 
However, if the amount of each language data is sufficient large, 
then the speaker factors can be averaged out.   In this case, we can 
assume that   and , then the procedures of 
training language subspace could be simplified as the eigenvoices 
modeling addressed in [9] and this approach was adopted in this 
paper. Here, we give a brief description: given the current 
estimation of language subspace ( can be randomly 
initialized), for each language , the posterior distribution of its 
language factor conditioned on the acoustic observations 

0,0 UV 0D
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l

lg

l  is Gaussian with mean lFBl
~1*1 and variance 1l ,

where BlNBIl 1* , and lFlN
~, is centralized 

zero- and first order Baum-Welch statistics, respectively. The re-
estimation of language subspace basis B  involves the EM 
iteration which is mean to maximize the following likelihood 
function:

,Bgmax mlPHMMgl

where l ranges over all the languages. It should be noted that, for 
small number of languages, the amount of each should be balanced 
in order to avoid that those languages with large amount data will 
dominate the estimation of language subspace.  

3.3. Language factor compensation (LFC) 

After the estimation of language subspace, the next procedure is to 
compensate the language factors in joint factor analysis model. 
Generally, there are two approaches for this task: 

1) The first way is to incorporate the language factors with 
speaker factors for speaker modeling, then the speaker dependent 
supervector would be:

DzVyBgms                            (5) 
This approach can model both the language and speaker characters 
for a speaker simultaneously; however, it may enroll in the intra-
speaker variability for bi-linguistic speakers, who frequently 
appear in Mixer corpus [7].   

2) Another strategy is to maintain the speaker dependent 
supervector as (2) unchanged, while combine the language factors 
with channel factors as nuisance attribute which is removed from 
the speaker’s supervectors: 

UxBgc                                      (6) 
The motivation of this approach lies in that, the mismatch between 
English data developed recognition systems and non-English 
utterances will be alleviated by removing the language characters. 
In this paper, we adopted the second approach for language factor 
compensation.  

4. EXPERIMENTAL RESULTS 

In this section, we report speaker verification experiments on the 
2006 NIST SRE corpus with language factors compensation (LFC). 
In this paper, we focus the discussion on the effect of language 
factors and the comparison with eigenchannels. To make things 
clear, we did not consider the role of eigenvoices, i.e. 0V , in all 
the experiments. Section 4.1 presents some general experiment 
setup information about the task, database and features. The results 
of these experiments are discussed in section 4.2.

4.1. Protocol 

Speaker verification experiments were conducted on the 2006 
NIST SRE corpus [10]. We focused on the core condition task, 
which involves 3,612 true trials and 47,836 false trials. The 
number of English trails is 24013 while that of non-English trails is 
27435. Enrollment and testing utterance contain about 2 minutes of 
pure speech after some voice activity detection.  
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4.1.1. Database 
The universal background model (UBM) is trained on Switchboard 
and Mixer corpus.  The majority of the data is spoken in English, 
while only a small portion of Mixer corpus data is spoken by 
several other languages.  NIST SRE 2004 and 2005 telephone data 
is used to model the eigenchannels, which contains thousands of 
utterances coming from 829 speakers.  In order to model the 
language subspace, we selected the multi-language data from two 
corpuses: one is the Oregon Graduate Institute (OGI) multi-
language corpus [11], which covers only 11 languages and much 
of the languages have small amount of data. To enlarge the amount 
as well as the diversity of the multi-language dataset, we also 
selected some data from 2004 and 2008 NIST SRE data, which 
come from Mixer corpus. The number of languages we used is 18 
including English, and the total amount is about 62 hours. The 
detailed information about this corpus is presented in table 1.

4.1.2. System configuration
For the features in the experiment, 12 MFCC coefficients plus C0 
are computed and cepstral mean subtraction (CMS) and feature 
warping over 300 frames are applied. RASTA filtering of the 
features follows. First, second and third order derivatives 
computed over 5 frames are appended to each feature vector, 
which results in dimensionality 52. HLDA is used to reduce the 
feature dimension from 52 to 39. A gender-independent UBM is 
used and its number of Gaussian components is 2048.   The rank of 
eigenchannels basis U is 100 and that of language subspace B is
12. In our experiments, B is trained by EM iterations while U is
simply obtained by kernel principle component analysis.  

4.2. Results 

Figure 1 and 2 show the DET curves of male and female part 
speaker verification results on the 1conv4w-1conv4w task of 2006 
NIST SRE. The baseline system uses the relevance MAP 

adaptation only, namely, 
r

D
12 and no session or language 

compensation was adopted. The relevance factor r was set to be 
16. The comparison experiments use language factor compensation 
(LFC) in both training data testing phases [12]. In training phase, 
the language factors of training utterances were removed from the 
models, and in testing phase, compensation was performed in the 
model level, namely: 

hUBMutt

htarutt
tarutt BgMXp

BgMXp

T
MXllr log1,                (7) 

where denotes the language factor of test utterance .hg uttX

English Farsi French German Hindi Japanese Korean Mandarin Thai Total size
OGI 2.60 1.29 1.36 1.33 0.24 0.98 1.01 1.16 - 10.58 

Mixer 3.06 0.95 - - 6.26 3.97 1.95 1.87 3.38 21.44 
Total size 5.66 2.24 1.36 1.33 6.50 4.95 2.96 3.03 3.38 32.02 

Tamil Spanish Vietnam Bengali Russian Italian Arabic Tagalog Cantonese Total size
OGI 1.33 1.56 0.95 - - - - - - 3.84 

Mixer - 1.72 6.95 1.32 4.65 1.29 3.21 1.31 5.48 25.93 
Total size 1.33 3.28 7.90 1.32 4.65 1.29 3.21 1.31 5.48 29.77 

Table 1.  The category of languages used in the experiments and its corresponding amount of speech (after voice activity 
detection and measured in the unit of hour), in which, the total amount of OGI multi-language data is 14.42 hours, and 
47.37 hours for Mixer data. 

We can see from the results that, on both male and female 
trails test, the language factor compensation is more effective for 
non-English trails when compared with English trails, and the gap 
between the two is narrowed accordingly. This may due to the fact 
that the language factor compensation (LFC) reduced the mismatch 
between English data trained UBM and non-English utterances.

 For the further discussion, we performed the second set of 
experiments on female part to compare the performance of 
language factor compensation (LFC) with eigenchannels as well as 
the combination of the two.  The compensation in all of those 
experiments were also carried out in both training and testing 
phases, and two kinds of combination approach were compared, 
namely, model level combination as equation (6) shows, and score 
level fusion as follows: 

uttlfcuttecutt XllrXllrXs 1                  (8) 

where 1  0 is the weight parameter. 
The results are presented in table 2 in both EER and DCF, 

which shows that, eigenchannels session variability compensation 
improves the performance of English trails significantly, in both 
EER and DCF. For non-English trails, however, the improvement 
is not so remarkable after eigenchannels. The reason may be just as 
it is discussed in section 3, that the eigenchannels which were 
trained mainly only on English data can not well describe the 
property of non-English data. Language factor compensation, on 
the other hand, can outperform eigenchannels on non-English trails 

Fig. 1.  DET curves before and after the language factor 
compensation of male part trails, English and non-English trails, 
respectively. 
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by only a 12 dimensional subspace trained on a small dataset.  
Hence, a straightforward idea is to combine the two approaches.   

 From our results, however, the model level combination of 
the two did not achieve promising result in both English and non-
English trails, whereas the score level fusion obtained significant 
improvement for non-English trails. The result of score level 
fusion indicates that the two approaches can be complementary. 
However, as for the failure of model level combination, the major 
reason may lies in the fact that the dimension of language subspace 
is too small and it’s noisy when compared with that of session 
subspace (12 dimensional language subspace roughly trained by 18 
different languages vs. 100 dimensional session subspace 
estimated by thousands of utterances). Additionally, the two 
subspaces estimated independently can not be guaranteed to 
cooperate well by pooling the basis together. When using 
maximum a posterior criteria for model training, it may be able to 
find a point with higher posteriori likelihood when moving in 
session subspace while do not consider the role of language 
subspace. Our future work will further investigate this question and 
the cooperation of language factor compensation with eigenvoices 
will also be addressed.

5. CONCLUSIONS 

This paper addressed the language gap problem in speaker 
recognition systems, namely, the systems which are trained mainly 
on English corpus data performs much worse on non-English trails. 
We adopted the approach of enrolling in a language factor in joint 
factor analysis models, whose role is to capture the language 
characters of training and testing utterances. Language factor 
compensation was carried out by removing the language attribute 
in both training and testing phases in order to reduce the mismatch 
between utterances and system. Experiments on 2006 NIST SRE 
data showed that, the language factor compensation itself can 
significantly improve the performance of non-English trails and 
meanwhile, narrow the gap of performance between English and 
non-English trails. When combined with eigenchannels, score level 
fusion achieved 19% relative improvement on the non-English 
trails of female part, when compared with eigencahnnels alone. 
Future works will focus on the model level combination of 

language factor compensation and eigenchannels as well as 
eigenvoices.

English trails non-English trails
Systems 

EER DCF  EER DCF
Baseline 7.84% .372 11.42% .566
LFC only 7.11% .328 9.8% .417

eigenchannels
only 5.03% .223 11.19% .412

Combination 
in model level 5.13% .226 11.19% .408

Combination 
in score level 5.13% .218 9.04% .374

Table 2. Comparison on female part of language factor 
compensation and session variability compensation as well as the 
different combination approaches of the two.

Fig. 2.  DET curves before and after the language factor 
compensation of female part trails, English and non-English 
trails, respectively. 
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