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ABSTRACT 
 
This paper proposes and compares four cross-lingual and 
bilingual automatic speech recognition techniques under the 
constraint that only the acoustic model (AM) of the native 
language is used at runtime. The first three techniques fall into 
the category of lexicon conversion where each phoneme 
sequence (PHS) in the foreign language (FL) lexicon is 
mapped into the native language (NL) phoneme sequence. The 
first technique determines the PHS mapping through the 
international phonetic alphabet (IPA) features; The second and 
third techniques are data-driven. They determine the mapping 
by converting the PHS into corresponding context-independent 
and context-dependent hidden Markov models (HMMs) 
respectively and searching for the NL PHS with the least 
Kullback-Leibler divergence (KLD) between the HMMs. The 
fourth technique falls into the category of AM merging where 
the FL’s AM is merged into the NL’s AM by mapping each 
senone in the FL’s AM to the senone in the NL’s AM with the 
minimum KLD. We discuss the strengths and limitations of 
each technique developed, report empirical evaluation results 
on recognizing English utterances with a Korean recognizer, 
and demonstrate the high correlation between the average KLD 
and the word error rate (WER). The results show that the AM 
merging technique performs the best, achieving 60% relative 
WER reduction over the IPA-based technique. 

Index Terms — Cross-lingual speech recognition, 
Kullback-Leibler divergence, lexicon conversion, senone 
mapping, resource constraint 
 

1. INTRODUCTION 
 
In recent years, we have observed an increasing number of 
deployed automatic speech recognition (ASR) applications 
in hand-held devices and automobiles where speech 
modality is shown to be superior to the conventional 
modalities (e.g., keyboards and stylus) due to the device size 
or the interaction environments. In many of these ASR 
applications, users occasionally need to control the system 
with bilingual commands. For example, a Chinese user may 
sometimes want to search for an English company using 
mobile search. To accomplish this task he/she may issue a 
command with English words mixed in a Chinese utterance 
or even with a pure English utterance. To support this usage 
scenario under the constraint that the recognition accuracy 
of the main language cannot be sacrificed new techniques 

need to be developed to allow the ASR recognizer trained 
for one language to recognize utterances in a second 
language (cross-lingual scenario) or in mixed languages 
(bilingual scenario). We call the language for which the 
acoustic model (AM) is trained the native language (NL) 
and other languages the foreign languages (FLs). 

Many multi-lingual and cross-lingual ASR techniques 
have been proposed and investigated in earlier studies 
[1][4][6]. However, the goal of the prior arts has been to 
develop ASR systems for new languages for which less or 
no training data are available. Our goal of this work differs 
from the above in that we are interested in conditions where 
only the acoustic model of the NL is used at the runtime, the 
recognition accuracy and speed for the NL not to be 
sacrificed, and the AM for each language is available or can 
be trained. We aim to develop the techniques that do not 
depend on human experts, and are sufficiently general so 
that they can be applied to different languages with no or 
very limited manual intervention. 

In this paper we propose and compare four techniques 
under the setting just described. Among the four, the first 
three techniques fall into the lexicon conversion category 
where each phoneme sequence (PHS) in the FL lexicon is 
mapped into the NL PHS: The international phonetic 
alphabet (IPA) [3] based technique finds the PHS mapping 
through the IPA features; The data-driven context-
independent (CI) and context-dependent (CD) phoneme 
mapping techniques determine the mapping by converting 
PHS into corresponding CI-phone and tri-phone hidden 
Markov models (HMMs) respectively and searching for the 
NL PHS with the least Kullback-Leibler divergence (KLD) 
between the HMMs. The fourth technique reported in this 
paper belongs to the AM-merging category where the FL’s 
AM is merged into the NL’s AM by mapping each FL 
senone to the NL senone with the minimum HMM KLD. 
We discuss advantages and disadvantages of each technique 
developed, report empirical results on recognizing English 
utterances with a Korean recognizer, demonstrate high 
correlation between the average KLD per phone and the 
word error rate (WER), and show that the AM-merging 
technique performs the best with 60% relative WER 
reduction over the IPA-based technique. 

The rest of the paper is organized as follows. In Section 
2, we describe the three lexicon conversion techniques and 
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the engineering tricks used to speed up the conversion 
process. In Section 3, we illustrate the more effective, 
senone-mapping based AM-merging (AMM) technique and 
the rationale behind it. We report the experimental results in 
Section 4 and conclude the paper in Section 5. 
 

2. LEXICON CONVERSION 
 
A straightforward approach that satisfies our settings is to 
keep the NL’s AM unchanged and convert the FL lexicon 
into one using the NL phoneme set. That is, for each 
pronunciation  in the FL lexicon 
represented in the FL phone set  we 
seek to find the best matched pronunciation 

 (1) 

represented in the NL phone set  , 
where  is the distance between the two sequences   
and . An obvious advantage of this approach is its 
simplicity since only the lexicon needs to be converted.  

The key to this approach is the definition and evaluation 
of the distance , and the algorithm to search for the 
best matched PHS . Two sets of techniques have been 
proposed in the past to estimate the distance: one based on 
expert knowledge such as the IPA features, and the other 
based on the likelihood difference [4] or confusion matrix 
[1] [6]. These previously proposed data-driven techniques 
require decoding the FL utterances with NL’s AM, and are 
either difficult to be extended to tri-phone pairs or costly in 
computation. In this section we first describe our baseline - 
IPA-based technique and then propose two new data-driven 
techniques based on KLD between HMMs. Compared with 
the IPA based-approach, the data-driven approach can be 
easily extended to different languages without expert 
knowledge or manual work as long as sufficient data are 
available to estimate the model parameters. 
 
2.1. Lexicon Conversion with IPA 
 
The well established IPA [3] classifies sounds based on 
knowledge of phonetic characterization of speech sounds. 
The idea behind the IPA-based lexicon conversion is to find 
a mapping from the FL phoneme sequences to the NL 
phoneme sequences based on the IPA features. Since it 
requires expert knowledge, usually only a limited number of 
 mapping rules between reasonably short sequences can be 

specified, i.e., 
 (2) 

where  is the index of the mapping rule. To find 
the best matched NL PHS  for a long FL PHS , we define 

 to be  if the mapping from  to  is invalid 
according to the rule set (2) and equals to the minimum 
number of rules applied to find the mapping otherwise. The 
best NL PHS  can be found with the dynamic 
programming algorithm or a finite state transducer. 

The IPA-based technique has three limitations. First, 
subjective influence may be introduced by the expert when 
defining the conversion rule set. Second, the IPA symbols 
are constructed largely based on speech production 
properties rather than on speech acoustics. Hence, the same 
symbol in IPA as marked in many databases may be 
pronounced differently in different languages. Third, the 
IPA-based conversion rule set can only include short PHS 
(usually with length one and two) and so cannot represent 
long-span dependency. 
 
2.2. Lexicon Conversion Using CI-Phone KLD 
 
Given the limitations of the IPA-based technique discussed 
above, a data-driven approach that defines the distance 
directly based on speech acoustics becomes attractive, 
which we present in this and the next subsections. 

Note that each phone  and  can be 
represented as CI-phone HMMs defined by 

 
 

(3) 

respectively, where  and are sets of output 
distributions,  are the initial state 
distributions, and and  are the transition matrices in 
the form 

 (4) 

for an S-state left-to-right HMMs. The PHS 
 and  can be represented as CI-phone 

HMMs constructed by concatenating CI-phone HMMs, i.e., 
 (5) 

 (6) 
We can thus define the distance between  and  as 

 

 

 

(7) 

where  is the symmetric KLD between 
two HMMs  and  whose upper bound can be 
estimated efficiently as discussed in [2] even if  and 

 have a different number of Gaussian mixture 
components  or states [5]. More specifically, we can use the 
approximation of 

 (8) 

where  is the symmetric KLD between state  in  and 
state  in  defined as 
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(9) 

 is the expected duration of the i-th state in 
, and 

 (10) 

compensates for duration differences between HMMs with 
different state sizes as discussed in [5]. 
 
2.3. Lexicon Conversion Using CD-Phone KLD 
 
The technique described in Section 2.2 can be improved by 
converting PHS into tri-phone HMMs: 

 
  

(11) 

and 
 

 
(12) 

and define the distance  
 (13) 

Since the number of tri-phones is much greater than the 
number of CI-phones and since the expansion of the tri-
phone sequence is context dependent, the search for the best 
matched PHS can be time consuming, esp. when converting 
a large lexicon. To speed up the process, we have developed 
and used two engineering tricks which we describe now. 

First, since the KLD between HMMs is a function of 
 and , we have greatly reduced the 

computation by caching these values. 
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Fig. 1. An example of the lexicon pre-fix tree 

Second, since many pronunciations share sub-
sequences, we can speed up the conversion process by 
caching the mapping results for those sub-sequences. The 
trick we used is to construct a prefix-tree based on the FL 
lexicon, where each arc is a FL phoneme and each node is 

associated with a partial pronunciation following the path 
from the root. Fig.1 shows an example of the tree. To do the 
conversion, we start from the root and find the best-N NL 
phone sequences for each node with the depth-first strategy 
till all nodes are processed. Each time a new node is 
processed, the results from its parent is used as the starting 
point. 

 
3. ACOUSTIC MODEL MERGING 

 
Although the CD-phone KLD based approach can perform 
better than the CI-phone based approach as demonstrated in 
the experimental results shown in Section 4, there is still 
room for improvement since the possible target tri-phoneme 
sequences in the CD-phone KLD based approach are 
constrained by the possible NL PHS candidates. If we allow 
for concatenation of any tri-phones (i.e., the left-phone of 
the tri-phone does not need to be the same as the right-
phone of the previous tri-phone) we may obtain a better 
matched concatenated HMM than what can be achieved 
with the constrained tri-phone sequence. Pushing this line of 
thinking further, if we allow for any concatenation of states 
(or senones) instead of multi-state tri-phone HMMs, we 
should be able to find even better matched concatenated 
HMM. Unfortunately, this cannot be achieved in the lexicon 
conversion framework since the HMM state sequence found 
is very unlikely to be associated with any valid NL PHS. 

Let’s examine what the best matched HMM would look 
like. Using (8), (9), (10) and noticing   and 

 (14) 

we obtain: 

 

 

 

(15) 

Eq. (15) indicates that we can find the best matched 
concatenated NL HMM by searching for the most similar 
NL senone for each FL senone and keeping the same 
transition matrix. This suggests that we can merge the FL’s 
AM (including phone set and decision tree) into the NL’s 
AM with shared NL senones. Merging the AM this way will 
only slightly increase the AM size and will not affect the 
decoding speed since the number of senones is unchanged 
and it is the senone number that dominates the size of the 
AM and the speed in evaluating the HMMs. Note that when 
merging the AMs we need to rename the FL phones in order 
to avoid name conflicts.  

The AM merging technique just described has many 
additional advantages. First, finding the best matched NL’s 
senone for each FL’s senone can be efficiently done. 
Second, the FL lexicon can be directly used without lexicon 
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conversion. Third, the NL and FL letter-to-sound (LTS) 
rules can be integrated into one making it easy to introduce 
new FL words in the applications. However, as a weakness, 
the AM merging approach requires modification of the AM 
and so cannot be easily extended to additional FLs once the 
AM is fixed. 
 

4. EXPERIMENTAL RESULTS 
 
The techniques we proposed and discussed above can be 
applied to both cross-lingual and mixed-lingual ASR. In this 
paper we focus on cross-lingual ASR and evaluate these 
techniques by recognizing English utterances with a Korean 
recognizer. 

The 33-dimension feature used in the experiments 
consists of 11-dimension MFCC and its first and second 
order derivatives. The English and Korean tri-phone models 
were trained with about hundred hours of speech and 
contain 2300 and 2100 senones, respectively. Each senone 
in the AM has two to nine, and on average five, Gaussian 
mixture components. The AMs were further compressed 
using the sub-space coding algorithm [7] to reduce the size 
and to speed up the decoding.  

Table 1: Comparisons of the average KLD per phone, WER, 
and RWERR for different techniques 

Technique KLD Per Phone WER RWERR 
IPA Mapping 260.6 62.1% 0% (baseline) 
CI-KLD 222.3 51.7% 16.7% 
CD-KLD 146.5 44.4% 28.5% 
AM Merging 41.7 25.0% 59.7% 
Bound 0 18.8% 69.7% 

 

 
Fig. 2. The relationship between average KLD and WER 

The English test set used in the experiment contains 
14K words. If we replace the Korean tri-phone model with 
the English tri-phone model or run both AMs in parallel in 
the system and use the English lexicon directly we get 
18.8% WER, which is the lower bound we can obtain for 
this test set using this compact AM. Table 1 summarizes the 
average KLD per phone, WER, and relative WER reduction 
(RWERR) for different techniques. We can clearly observe 
from the table that the shared senone AM merging technique 
achieved the best result with 25.0% WER or 59.7% 
RWERR over the baseline - IPA lexicon conversion 

technique. Fig. 2 shows the relationship between the average 
KLD and the WER and indicates that the average KLD is 
highly correlated with the WER. This confirms that HMM 
KLD is an appropriate objective function for optimization.  
 

5. SUMMARY AND CONCLUSION 
 
In this paper we have proposed and compared four 
techniques for cross-lingual and mixed-lingual ASR. We 
have shown that we can gradually reduce the WER as we 
reduce the KLD between the mapped NL’s PHS and the 
FL’s PHS by relaxing constraints on possible phoneme 
sequences. We have demonstrated that the shared-senone 
AM merging technique achieved the best result with 59.7% 
relative WER reduction over the baseline IPA approach. If 
additional senones are allowed to be included in the NL’s 
AM, the KLD measure can also be used to determine what 
senones to add. Our technique can be easily extended to 
recognizing accented FL utterances, where we need an 
additional step of adapting the FL’s AM with accented FL 
utterances before applying the AM-merging technique 
described in this paper. 

We believe that the behavior of the bilingual ASR will 
be highly correlated to the cross-lingual ASR result we have 
obtained. This hypothesis will be tested in our future work 
by collecting and testing on bilingual data sets.  
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