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ABSTRACT

Despite their effectiveness for robust speech processing, missing
data techniques are vulnerable to errors in the classification of the
input speech signal’s time-frequency points. A direct method for the
removal of these mask errors is through the top-down optimization
of the estimated mask, however this requires a measure to evaluate
the mask quality without a priori noise knowledge. In this paper we
propose the normalized likelihood confidence as such a criterion for
robust speaker recognition. In this approach the accuracy with which
an estimated mask classifies time-frequency points as corrupt or re-
liable is related to its likelihood score confidence. This is based on
the conceptual effect of binary mask errors on the model likelihood
distributions produced by accumulated marginalization densities.
Experimental results confirm a relationship between the normalized
likelihood distance and the accuracy of the time-frequency mask
produced by various estimation strategies.

Index Terms— robust speaker recognition, time-frequency
masking, missing data

1. INTRODUCTION

Speech processing systems typically suffer a decrease in perfor-
mance when noise and acoustic variabilities are present in the
speech. Missing data methods have been shown to be effective for
providing robustness to environmental distortions for both speech
and speaker recognition tasks [1, 2]. In these techniques a time-
frequency (TF) mask is constructed which labels each individual
TF point as speech or noise dominated. A priori noise knowledge
allows the construction of oracle masks which perfectly separate
speech from noise, and as a result these masks can provide ex-
tremely high robustness to noise corruption. Past research has
focused on producing an accurate estimation of the oracle reliability
mask [3], however this is difficult in practice due to the presence of
non-stationary noises. The weakness of traditional approaches to
missing data is that the recognizer has no protection from errors in
the estimated mask, particularly where truly unreliable components
are assigned a high reliability.

Recent research in robust speaker recognition has attempted to
improve the estimation of the reliability mask by utilizing informa-
tion in the trained models. An example is the universal compen-
sation technique [4] where a search is performed within multicon-
dition spectra to produce the model specific feature subset which
maximizes recognition performance. An alternate approach, which
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avoids the potentially expensive calculation of model specific sub-
sets, is to use top-down optimization to remove errors within an ini-
tial estimated bottom-up TF mask with the goal of reproducing the
ideal oracle mask. This approach requires the existence of a criterion
to evaluate the quality of a given TF mask at each stage of the refine-
ment process without the presence of a priori noise knowledge. Past
research has related the difference in sound class dependent statis-
tics between oracle and estimated TF masks to the difference in their
recognition accuracies [5]. However, the calculation of this distance
is dependent on the availability of the oracle mask, and thus cannot
be used when attempting to reproduce the oracle mask from an initial
inaccurate estimate.

This paper proposes normalized likelihood distances as a novel
measure for determining the quality of estimated TF reliability
masks in arbitrary unknown noise conditions. Conceptually the
criterion is based on the differences between the model likelihood
distributions of the perfect oracle mask and inaccurately estimated
masks over a sufficiently wide frame context. This is enabled by the
nature of the speaker recognition task in that a given speech sample
corresponds to only one model over its entire duration. In conjunc-
tion with the discriminative properties of missing data likelihoods,
this allows the accuracy with which an estimated mask classifies the
TF points as speech or noise dominated to be related to its likelihood
score confidence. Formulating the mask confidence as the normal-
ized likelihood distance thus provides a criterion for measuring the
quality of reliability masks without the requirement of oracle noise
knowledge. The measure is evaluated experimentally for estimated
TF masks of varying accuracy, and the results confirm the ability of
the normalized likelihood distance to discriminate between oracle
masks and corrupted estimates.

The remainder of this paper is organized as follows. Section 2
describes the proposed measure including an overview of missing
data marginalization and the theoretical calculation of the normal-
ized segment likelihood distance. Section 3 presents an evaluation
of the measure and a discussion of the results. Conclusions and fu-
ture work are outlined in Section 4.

2. METHOD OVERVIEW

2.1. GMM Identification with Marginalization

In Gaussian Mixture Model (GMM) speaker identification each
speaker is represented as a weighted sum of M Gaussian densities
[6]. Given a speaker represented by model λ, and a spectral obser-
vation vector �x = (x1, x2, ..., xD)′ the observation likelihood is

p(�x|λ) =
MX

i=1

ciN (�x; �μi, Σi), (1)
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where ci is the weight of the ith mixture and N is a D-variate Gaus-
sian with mean vector �μi ∈ R

D and covariance matrix Σi ∈ R
D×D .

Each speaker is parameterized by the mean vectors, covariance ma-
trices and mixture weights from all component densities as in [6].

Let the binary TF mask vector corresponding to observation �x
be �m = (m1, m2, ..., mD)′. Based on this mask vector the compo-
nents of a given observation can be labeled as reliable (r) or unre-
liable (u) according to �xr = {xf |mf = 1, f = 1, 2, . . . , D} and
�xu = {xf |mf = 0, f = 1, 2, . . . , D}. This allows a corresponding
separation of the model parameters (refer to [7]), and the marginal
probability density p(�xr|λ) is obtained by integrating over the dis-
tribution of the unreliable components:

p(�xr|λ)=

MX
i=1

ciN (�xr; �μri , Σrri)

�xhZ
�xl

N (�xu; �μu|ri
, Σu|ri

)d�xu, (2)

where �μu|ri
∈ R

Du and Σu|ri
∈ R

Du×Du are the conditional mean
and conditional covariance respectively as defined in [8]. For a group
of S speakers with corresponding GMMs λs, s ∈ S = {1, 2, ..., S}
the identification decision for an utterance X = (�x1, �x2, . . . , �xT ) is
obtained by maximization of the marginal log-likelihoods accumu-
lated over all observations:

ŝ = argmax
1≤k≤S

TX
t=1

log p(�xtr |λk). (3)

2.2. Bounded Marginalization and Mask Errors

In bounded marginalization recognition the lower and upper integra-
tion bounds are set to 0 and the observed component value respec-
tively such that [�xl, �xh] = [�0, �xu] [8]. Here the bounded integral ef-
fectively uses the unreliably declared TF points to provide counter-
evidence by penalizing models whose energy is much greater than
the observed feature value.

Binary estimates of the oracle mask may contain two types of
errors: inclusion errors and deletion errors. Conceptually, when
compared to the oracle mask, estimated masks with either type of
error experience a decrease in the likelihood of the true model and
an increase in the likelihood of one or more imposter models. For
inclusion errors the true model likelihood is decreased due to the
mismatch between the trained distributions and the observed values
of the inclusion error components, while imposters may benefit from
a decrease in the likelihood penalty (since some truly noisy compo-
nents no longer contribute to the multi-variate integral). For deletion
errors the true model likelihood decreases since observed compo-
nents which are matched to the trained distribution are now used
in the integral contribution increasing the counter-evidence. Con-
versely likelihoods are increased for imposter models whose feature
distributions have lower energy than the observed deleted compo-
nents due to the removal of the mismatch.

2.3. Likelihood Confidence Hypothesis

The conceptual effect of binary mask errors allows the formulation
of a relationship between the distribution of accumulated likelihoods
over all models and the accuracy of an estimated mask compared to
the true oracle mask. A hypothesis is stated as follows:

1. Over a sufficient number of observations, the oracle reliability
mask produces both a large likelihood for the winning model
(often the true model), and a large likelihood difference be-
tween this winning model and its nearest competitors.

2. The correction of all errors within an estimated mask should
increase the likelihood score of the winning model and the

likelihood difference between the winning model and its near-
est competing models in comparison to these values from the
initial estimated mask.

This is based on the critical assumption that an accurately estimated
oracle mask will have a higher likelihood confidence, and will pos-
sess a winning model with a higher likelihood score compared to an
inaccurately estimated oracle mask.

2.4. Normalized Segment Likelihood Distances

Let an observation segment X be defined as the set of K observa-
tions X = {�x1, �x2, . . . , �xK}, with corresponding reliability mask
vectors M = {�m1, �m2, . . . , �mK}. The likelihood score of the seg-
ment X on a given model λ is computed as the sum of the marginal
likelihoods over all observations:

Lλ(X|M) =
KX

k=1

log p(�xkr |λ), (4)

where p(�xkr |λ) is defined as in (2), and the reliability partitioning
is determined by �mk. The distribution of segment likelihoods for all
speaker models is defined as

D(X|M) = ∪s∈S{Lλs(X|M)}. (5)

The likelihood confidence of the mask segment is quantified by the
distance between the maximum likelihood within the distribution
and the mean likelihood of the N -nearest competing models. The
maximum likelihood within the distribution set is given by

Lmax(X|M) = max
s∈S

Lλs(X|M), (6)

and smax denotes the speaker whose model produces this maximal
likelihood. Formally the N -nearest competitor speakers are the sub-
set of speakers Z ⊆ S with |Z| = N such that

Z = argmax
|V |=N,V ⊆S,smax /∈V

Q(V ), (7)

where Q(.) is the sum of the segment likelihoods from all models
whose speakers are included in the set:

Q(V ) =
X
s∈V

Lλs(X|M). (8)

The distribution of competitor segment likelihoods is thus given by

Dcomp(X|M) = {Lλs(X|M)|s ∈ Z}, (9)

and the likelihood distance (LD) of the mask segment is

LD = Lmax(X|M) − E[Dcomp(X|M)]. (10)

To prioritize mask segments which approximate the oracle segment
over highly corrupted segments, the likelihood distance LD is nor-
malized by the absolute value of the maximal likelihood to produce
the normalized segment likelihood distance (NSLD):

NSLD =
Lmax(X|M) − E[Dcomp(X|M)]

|Lmax(X|M)|κ , (11)

where κ is a bias factor controlling the relative weight of the absolute
value of the maximal likelihood compared to the likelihood distance
for the criterion (see Fig. 1).

3. EVALUATION

3.1. Experimental Setup

The criterion was evaluated on text-independent speaker identifica-
tion using a 95 speaker set from the TIMIT database. For each
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Fig. 1: The normalized likelihood confidence for TF masks of varying accuracy. For oracle mask segments the maximal distribution likelihood
exceeds the competitor likelihoods. Moderate corruption produces a decreased maximal-to-competitor likelihood distance compared to the
oracle segment. Extreme corruption may produce maximal likelihoods from imposter models, and normalization is thus required.

speaker the SI and SX sentences used for model training and seg-
ments from the SA sentences used for testing. Averaged NSLD val-
ues were calculated for 21 randomly selected test utterances from the
data set. The Hidden Markov Model Toolkit (HTK) [9] was used to
construct spectral feature vectors from a 48-channel mel-filterbank
as well as 4 mixture full covariance GMMs to model the speakers.

Additive white noise from the NOISEX database was used to
corrupt test utterances mixed at SNRs of 20, 10 and 0 dB. In each
noise condition the behavior of the normalized likelihood distance
measure was evaluated for varying degrees of mask corruption com-
pared to the oracle mask. For an observed noisy TF component
xf ∈ �xt with corresponding clean speech and noise spectral en-
ergies of xs

f and xn
f respectively, the oracle mask value is given by

moracle
f =

j
1 if xs

f > xn
f ,

0 otherwise.
(12)

The response of the NSLD measure to random inclusion and dele-
tion errors in the oracle mask was examined, where Pinc and Pdel

are the respective probabilities of including each noise dominated
component and deleting each speech dominated component. Since
practical estimation techniques typically produce masks containing
block corruption rather than random errors, the criterion was also
evaluated for spectral subtraction mask estimation [10]. For esti-
mated speech and noise spectral energies x̄s

tf and x̄n
tf respectively,

the spectral subtraction mask value is defined as

mss(θ)
f =

(
1 if 10 log10

“
x̄s

f

x̄n
f

”
> θ,

0 otherwise,
(13)

where the energy estimates are produced as in [7], and θ is the energy
threshold in dB. To investigate the effect of inclusion errors in spec-
tral subtraction masks, the behaviour of the NSLD was also mea-
sured for combined oracle and spectral subtraction masking where
component wise multiplication was used to remove inclusion errors:

mo*ss(θ)
f = moracle

f ∗ mss(θ)
f (14)

3.2. Results

NSLD values were calculated for segments consisting of K = 50
frames using a competitor set size of N = 5 and a normalization
bias of κ = 1. These values were determined empirically based on
separate experiments which are omitted for brevity. For random cor-
ruption it is observed that the normalized likelihood distance peaks
for the oracle mask (Pinc = Pdel = 0) in conditions of 20 dB and

10 dB (see Fig. 2(a) and 2(b)). As the probability of deletion and in-
clusion is increased the NSLD decreases from this peak value until
sufficient corruption is introduced such that there is a switch in the
model producing the maximal likelihood. For the 10 dB case this oc-
curs for inclusion and deletion corruption probabilities of Pinc ≈ 0.5
and Pdel ≈ 0.7 respectively, and additional corruption beyond these
values causes the NSLD to increase as the distance between the new
maximal likelihood and its competing likelihoods increases.

In the 0 dB condition the peak NSLD value is obtained for the
unity mask, and only a small amount of inclusion corruption causes
inflection (see Fig. 2(c)). Due to the strength of the noise, oracle seg-
ments have small maximal-to-competitor likelihood distances and
so less inclusions are required to cause a switch in the model pro-
ducing the maximal likelihood. Although additional corruption may
decrease the value of this maximal likelihood the mean competitor
likelihood decreases more rapidly allowing the corrupted segment
NSLD to exceed the oracle segment NSLD. In this case the NSLD
can correctly discriminate between the true oracle mask and inclu-
sion error corrupted masks only for 0 ≤ Pinc ≤ 0.6.

A relationship between the quality of the estimated mask and the
obtained NSLD values was also confirmed for spectral subtraction
masking. In all noise conditions significantly lower NSLD values
were observed for spectral subtraction estimated masks compared to
the true oracle mask (see Fig. 3). When inclusion errors were re-
moved in the spectral subtraction masks the NSLD values increased
to become approximately equal to the oracle NSLD values. The dif-
ference between NSLD values for spectral subtraction and combined
oracle spectral subtraction masks decreased as θ increased, and this
is due to a reduction in the number of inclusion errors which are
removed by the oracle combination.

3.3. Discussion

The results presented demonstrate the validity of using the normal-
ized likelihood confidence as a measure for determining the quality
of an estimated mask segment. For both randomly corrupted oracle
masks and spectral subtraction estimated masks a decrease in NSLD
was observed compared to the true oracle mask.

Although not explicitly shown in this investigation, it should be
noted that the behavior of the NSLD measure is dependent on both
the segment size and the number of competitors considered. The seg-
ments should consist of a large enough number of frames such that
reliable deletions occurring in low speech energy regions cannot bias
the likelihood confidence towards imposter models. The trade-off in
choosing the size of the competitor likelihood distribution is between
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(a) White Noise 20dB (b) White Noise 10dB (c) White Noise 0dB

Fig. 2: Normalized segment likelihood distances averaged over all segments for random inclusion and deletion error corruption of the oracle
mask. Results are presented for additive white noise distortion at 20 dB (a), 10 dB (b) and 0 dB (c).

obtaining maximum discriminability between oracle and corrupted
segments and introducing vulnerability by including too many out-
lier models in the distance calculation. The optimal competitor set
size will depend on the type of mask errors encountered and may
therefore differ depending on the specific mask estimation technique
used.

Fig. 3: Normalized segment likelihood distances for the oracle
mask (Oracle), standard spectral subtraction masks (SS) and com-
bined oracle spectral subtraction masks (O*SS). Energy thresholds
of θ = −3, 0 and 3 dB are used.

The advantage of using the NSLD to measure mask quality is
that its calculation does not require knowledge of the oracle mask.
This motivates its use as a criterion to evaluate modifications made
to segments of an estimated mask by a top-down refinement scheme.
However use of the metric in this way is subject to some limitations.
Firstly, it cannot be guaranteed that the oracle mask segment has the
largest NSLD value compared to any arbitrary mask segment. The
evaluation demonstrates that for binary estimated masks with rea-
sonable corruption compared to the oracle mask the NSLD decreases
and decreases in proportion to the magnitude of this corruption. The
primary requirement of top-down mask optimization is to correct
segments where corruption causes the maximal likelihood value to
occur for an imposter model, but at low SNRs segments with extreme
inclusion corruption can be favored by the criterion (as in Fig. 2(c)).
This emphasizes the need to constrain the optimization using an ini-
tial bottom-up mask estimate to avoid these superficial cases. Sec-
ondly, the lack of a closed form solution to maximizing the NSLD

suggests that optimization must proceed through successive modi-
fication and evaluation of possible candidate segments. The large
space of possible solutions for the optimized segment may impose
limits on the techniques which can be applied.

4. CONCLUSIONS

This work has proposed normalized likelihood distances as a crite-
rion for measuring the quality of a TF mask for missing data speaker
recognition. Based on the properties of bounded marginal densities,
the normalized likelihood confidence is used to quantify the corrup-
tion in an estimated reliability mask without the need for a priori
noise knowledge. Experimental evaluation confirmed the existence
of a relationship between the averaged NSLD values and the accu-
racy of the reliability mask estimate for both random corruption of
the ideal mask and practical SNR-based estimation. Future work
will focus on the utilization of the measure within an optimization
method for the refinement of estimated reliability masks.
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