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ABSTRACT 

In a collaborative scenario, a multiplicity of portable devices 
may constitute a network of distributed microphones, without a 
clearly defined geometric configuration or synchronization that 
can be taken advantage of for traditional microphone array 
processing to enhance the acquired signal. This application 
scenario represents a severe, but interesting challenge for 
automatic speech recognition systems. In this paper, we 
investigate a variety of robust speech recognition techniques 
with a focus on the distributed transducer scenario. We also 
report some important study results that lead to new thinking in 
the design of robust speech recognition for broadened 
applications. Two issues that are inherent to distributed 
transducer networks are specially investigated. First, we study 
the effect of the sampling rate skew of microphones to the 
system performance; second, we explore the possibility of 
combining recognition hypotheses from multiple transducer 
channels for improved recognition accuracy.  

Index Terms— Robust speech recognition, distributed 
transducer network, sampling rate skew, system combination. 

 

1. INTRODUCTION 

The increasing prevalence of mobile devices such as 
cellphones, PDAs, and laptop PCs in place of traditional 
telephones, brings new possibilities for speech recognition 
applications. In one example, a user may hold his/her cellphone 
or PDA in the front (rather than at the ear) for short message 
(SMS) dictation. In another collaboration application, the use of 
speech recognition tools to transcribe audio streams captured 
by portable devices has been proposed [1], [2]. In a 
collaborative (meeting) scenario, a multiplicity of these mobile 
devices may be used, constituting a network of distributed 
transducers or microphones, without a clearly defined 
geometric configuration or synchronization that can be taken 
advantage of for traditional microphone array processing to 
enhance the acquired signal. These application scenarios 
represent a severe, but interesting challenge for speech 
recognition systems.  

The challenge here may be considered within the realm of 
robust automatic speech recognition, the goal of which is to 
maintain satisfactory recognition accuracy under arbitrary 

operating conditions. It is well known that the current 
technology suffers substantial performance degradation if it is 
operated in a mismatch condition, i.e. the condition in which 
the recognizer was not designed for. 

The mismatch between training (design) and testing 
(deployment) conditions can be the result of a number of 
factors. The mismatch from inter-speaker variability include 
accent, dialect, and speaking rate differences; the speaking 
environment mismatches involve interfering noise, noise-
induced change in speaking styles (the Lombard effect), 
(linear) channel distortion due to variations in the microphone 
response, and voice network trans-coding. These factors have 
been extensively studied in the past two decades in a certain 
degree [3], [4]. 

Earlier approaches dealing with the mismatch problem can 
be broadly classified into three categories. The first category is 
often referred to as speech enhancement methods that attempt 
to clean up the signal so as to produce acoustic features that are 
very close to those obtained under a matched condition. The 
second category aims at robust feature selection and 
comparison, which chooses a feature representation or a 
dissimilarity measure that is not overly sensitive to 
environmental changes, thereby achieving robust performances. 
The third category is in the area of adaptation methods, which 
are designed to transform either the observation (feature) vector 
or the model in response to an estimated change of the 
operating conditions (including a change in speaker). As an 
example, central mean normalization (CMN) [5] and its 
extension, cepstrum bias removal methods, are simple and 
robust methods that are suitable for dealing with convolutional 
distortions. These traditional methods tend to address one 
single dimension of the general robustness problem. The 
aforementioned new application scenarios, nevertheless, 
contain additional dimensions of the potential mismatch 
condition that need to be accounted for.  

It is thus the purpose of this paper to elaborate on the new 
dimensions of the mismatch condition, with a focus on the 
distributed transducer scenario, and to report some important 
study results that lead to new thinking in the design of robust 
speech recognition techniques for broadened applications. 

In the aforementioned application scenario, distributed 
devices are connected via a local area network, likely to be of 
an ad hoc type. Speech data acquired at these distributed 
devices need to be coded and transmitted to a server where 
further processing is performed. Thus the server has access to 
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multiple channels of the acoustic signal, although each of 
which is independently acquired. This configuration gives rise 
to many new issues that significantly affect the performance of 
an intelligent system that converts speech data into text via the 
use of an automatic speech recognition system. Key issues 
involved in this scenario include non-linear distortion 
introduced by the speech codecs, the trans-coding distortions 
that are usually difficult to model, room acoustic responses that 
are hard to estimate or track (a talker speaking at an unspecified 
distance and location relative to the transducers), background 
noise and interference (say, stray conversations on the side 
irrelevant to the main talker's speech), and the heterogeneity of 
the devices such as sampling rate skews and a lack of 
synchronization and calibration of signals. These issues 
constitute new challenges as we expand the scope of 
applications of automatic speech recognition systems.  

In the following section, we elaborate these somewhat new 
adverse conditions and discuss our methodology of study in 
hopes of developing some insights as well as effective methods 
to mitigate the potential problems that come with these factors. 
An additional issue, also worthy of study, is the possibility of 
integrating multiple channels of speech input with multiple 
speech recognition systems for enhanced recognition 
performance. The new scenario provides an opportunity for the 
application of known algorithms, such as the ROVER [6], 
which fuses individual channel results to produce improved 
recognition performance. 

The remaining of the paper is organized as follows: Section 
2 discusses the issue of sampling rate mismatch among 
distributed microphone array. Section 3 describes the method 
of combining output from multiple microphones for better 
recognition performance. The procedure of collecting the 
speech database is reviewed in Section 4, and experiments and 
results are described in Section 5. 

 2.  ISSUES OF SAMPLING RATE SKEW 

The lack of a common clock reference is a fundamental 
problem when dealing with audio streams originating from or 
heading to different distributed sound capture or playback 
devices. Traditional multichannel digital signal processing 
tools, which take audio from multiple transducers as their input, 
such as blind source separation (BSS) and acoustic echo 
cancellation (AEC), will not work as expected if the incoming 
audio streams are not synchronized. Thus, the benefit of 
multiple audio inputs to speech recognition may be 
substantially discounted as a result of the lack of sampling 
synchronization. 

In discrete commercial components, the tolerance of 
sampling rate skew, usually specified in parts per million 
(ppm), can range from just a few ppm’s to many hundreds of 
ppm’s. Furthermore, the specific operating frequency of these 
devices is temperature-dependent. For example, the data sheet 
of a popular audio chipset for portable devices specifies that its 
sampling frequency closest to 8 kHz can actually be 8.0182 
kHz for certain master clock frequencies. This sampling 
frequency corresponds to a mismatch of more than 2000 ppm.  

Regarding the estimation of the rate mismatch, one 
approach described in [7] is to transmit some known calibration 
sound signal to all of the acquisition devices. To avoid the 
interference with the ongoing application, the calibration needs 
to be carried through a quiet channel, such as an FM radio 
receiver, available to all the devices. Unfortunately, such a 
channel may not be available in many applications. Another 
possibility for rate estimation is to use network packet time-
stamps, as proposed in [8]. The time-stamp information is 
readily available, but the estimation is challenging due to the 
jitter in the network delays. Obtaining an accurate and fast 
estimate of the rate mismatch remains a challenge.  

All of these challenges make it necessary to first understand 
what the exact synchronization requirements for a given 
application are. In [9], we have presented a set of experimental 
results illustrating the impact of sampling rate mismatches in 
batch BSS and adaptive AEC applications. The results reveal 
that adequate synchronization is a key for the performance of 
the speech enhancement algorithms. In this paper, we present 
an experimental study to analyze the sensitivity of speech 
recognition to variant rate mismatch factors. 

3. COMBINING OUTPUTS FROM MULTIPLE 
MICROPHONES 

A straightforward approach using multiple microphones to 
improve the speech recognition performance is through 
beamforming. With prior knowledge of the microphone 
locations, a microphone array can enhance the signal coming 
from the direction of a desired speaker and suppress undesired 
interference and noise from other directions. However, 
traditional microphone array techniques are not directly 
applicable to the current situation of distributed microphones. 
The main challenges of the distributed microphones are as 
follows: the spatial topology of the transducer network is 
uncertain and may change over time, and there is no common 
clock to synchronize all microphones. In addition, these 
microphones are heterogeneous and have different gains, 
system responses and signal-to-noise ratios.  

In this paper, we investigate the possibility of combining 
multiple signals at the word hypothesis level. Specifically, we 
apply ROVER [6] to combine the recognition outputs from 
multiple microphones. The ROVER algorithm was originally 
proposed to improve the performance of speech recognition by 
combining multiple speech recognizers. It first constructs a 
confusion network by aligning all the system outputs through 
an iterative procedure. Then a rescoring process follows to 
select a word sequence with the best score among all sequences 
that traverse the network. Since the nature of ROVER is to 
extract a consensus hypothesis from multiple decision 
alternates of the same objective, this technique could be applied 
to combine recognition hypotheses from multiple microphone 
channels.  

4. SPEECH DATABASE 

An experimental database based on the original TIMIT dataset 
was constructed for research in practical distributed transducer 
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network applications. The recording was performed in a 
conference room equipped with sound attenuating wall panels 
and acoustic ceiling tiles. Utterances of the original TIMIT 
database were played back through a loudspeaker, and captured 
by a variety of commercial portable devices for a realistic 
signal quality. The resulting speech corpus is referred to as 
TIMIT DM. Table 1 briefly describes the types of these 
recording devices. Built-in automatic gain control (AGC) and 
noise suppression provisions were disabled in those portable 
devices that support such features. In addition to the 
microphone channels of these portable devices, a wired 
microphone was used as a reference channel to record 
synchronously with the playback device.  

The portable devices and the reference microphone were 
located on a round conference table, about 3 feet away from the 
PDAs. The reverberation time of the room during the 
recordings was approximately 200 milliseconds. The ambient 
acoustic noise was primarily due to AC air flow and pipe-
transmitted vibrations. The acoustic noise level measured 
between 33 and 36 dBA at the location of the portable devices. 
 
Table 1. Recording devices used for speech data acquisition. 

 
Device ID Model 

HP1 HP iPAQ rx3100 PDA  
DL2 Dell Axim x51v PDA  
HT3 HTC S710 cellphone  
NB4 Dell Inspiron 8500 notebook  

AT5 Audio Technica AT899 omnidirectional 
condenser microphone 

 

5. EXPERIMENTS AND RESULTS 

In this section, we evaluate the capabilities of different robust 
speech recognition techniques in the context of the distributed 
transducer network using the TIMIT DM corpus. We built a 
baseline phoneme recognition system based on the hidden 
Markov model (HMM) paradigm. The experimental conditions 
are similar to those established by Lee and Hon in their 
benchmark experiments [10]. All phones are modeled as 3-state 
strict left-to-right context-independent HMMs. Each state 
observation density is modeled by a 64-component Gaussian 
mixture density with diagonal covariance matrices. The input 
feature is a 39-dimension vector of 12 MFCC’s and log energy, 
and their first and second order time derivatives. These models 
are trained with the maximum likelihood (ML) method 
implemented by HTK [1]. Recognition is carried out by a 
Viterbi search that uses a phone bigram language model.  

5.1. Baseline system 

Table 2 shows phoneme accuracy with respect to different 
microphone channels. The recognizers are trained and tested 
within the data set of the same channel. The results under this 
matching condition can be seen as an upper bound for robust 
recognition in mismatched conditions. The first column, 

labeled as Clean, is the result using the original TIMIT corpus 
for both training and testing.  

The phoneme accuracy of the portable devices ranges from 
48.39%-61.16%. It is observed that the three PDA devices 
(HP1, DL2, and HT3) perform substantially better than 
Channel NB4 of the laptop PC, which is in large part due to the 
amount of noise generated by moving parts of the laptop, such 
as CPU fans and hard disks in operation. Moreover, the 
recognition rates of the PDA devices are comparable with that 
obtained using the reference microphone, AT5, which partially 
indicates that in terms of sound quality, portable devices are 
approximately equivalent to wired microphones as unit 
components in deploying distributed recognition networks.  
 
Table 2. Phone recognition results with respect to different 
distributed devices evaluated under matching conditions. 
 

 Clean HP1 DL2 HT3 NB4 AT5 
Phone acc. (%) 70.41 61.16 58.88 63.05 48.39 59.50 

 
A second experiment is performed to evaluate the 

performance of distributed recognition systems under 
mismatching conditions. Two kinds of recognition systems are 
examined. The first system is trained using TIMIT clean data 
and the second is trained using data from Channel HT3 of 
TIMIT DM, which is chosen due to its best recognition rate 
among all portable devices in the matching condition. The two 
recognizers are evaluated using the testing data from portable 
devices of TIMIT DM. The experiment with the second 
recognizer can be interpreted as the recognition under the 
mismatch that is mainly from the switch of microphone 
channels, while the experiment with the first recognizer 
confronts with various kinds of  mismatches, including 
background noise, room reverberation, and characteristic of 
microphones.  
 
Table 3. Phone recognition results with respect to different 
distributed devices evaluated under mismatching conditions. 
 

Clean HP1 DL2 HT3 NB4 
Baseline 34.70 33.56 35.59 23.00 

CMN 37.60 37.54 51.89 24.34 
 

HT3 HP1 DL2 HT3 NB4 
Baseline 35.31 42.62 - 30.30 

CMN 48.54 49.80 - 33.88 
 

Table 3 shows the recognition performance of the two 
recognizers in a baseline configuration, and one configuration 
using CMN to compensate for feature mismatch. First, the 
recognizer trained with Channel HT3 usually outperforms the 
recognizer trained with clean data, since the data of Channel 
HT3, though noisy and distorted, matches better to the testing 
condition than does the clean data. CMN improves the accuracy 
of speech recognition as expected. Another observation 
concerning the CMN method is that it does not improve the 
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accuracy of Channel NB4 as much as that of the other channels. 
Noticing that Channel NB4 is intervened by a high additive 
noise from surrounding components of the laptop, we could say 
that CMN falls short of mitigating the additive noise, and thus 
the gain of CMN decreases in the condition of noise level 
mismatch.  

5.2. Effects of sampling rate skew 

We evaluated the effect of recognizing speech as a result of 
sampling rate mismatch between the training data and the 
testing data where the recognizers are trained and tested within 
data set from the same channel (except that the testing data is 
re-sampled into a different sampling rate). 

Table 4 shows the range of the recognition results of 
different channels when we exponentially increase values of 
sampling rate mismatch from 0 to 8,192 ppm’s. It is hard to 
observe any substantial effect of the sampling rate mismatch to 
the recognition system in the context of recognition using 
individual channels. We attribute the robustness of the 
recognition systems against sampling rate skew to the 
characteristics of MFCC acoustic features, which represent 
speech waveforms in the form of filter banks and to a good 
degree tolerate the deviation of frequencies.  
 
Table 4. Phone recognition results with respect to different 
sampling rate mismatches. The first row records the actual average 
sample rate mismatches of each channel relative to the AD/DA 
converters used for playback and reference recording.  
 
 HP1 DL2 HT3 NB4 

Rate  mismatch (ppm) 141 5860 942 -6140 
Min phone acc. (%) 61.07 58.60 62.94 48.23 
Max phone acc. (%) 61.23 58.92 63.20 48.41 

 

5.3. Combining hypotheses from microphone channels 

We tested ROVER for combining the recognition outputs from 
the distributed microphone network. All of the four portable 
devices are configured for recognizing under matching 
conditions, i.e. the recognizer of each channel is trained and 
tested using data acquired from the same channel, and no 
sampling rate skew is introduced. The recognition accuracies of 
component devices are listed as in Table 2. The consensus 
output yields a phone accuracy of 63.47%, which is a slight 
improvement over the best single system of a phone accuracy 
of 63.05%.  

6. CONCLUSION 

In this paper, we described our ongoing research in the use of 
distributed transducer network for improved robust speech 
recognition. We studied different robust speech recognition 
techniques in the context of the distributed transducer network 
using the TIMIT DM corpus. We showed that CMN provides 

complementary benefits to speech recognition in channel 
distortion. We did not observe the effect of sampling rate skew 
of individual channels to the recognition performance. We also 
found that the system combination algorithm that combines the 
recognition outputs from multiple channels yields a slight 
improvement over the output of the best single channel.  

Nevertheless, in a typical telecollaboration setting where 
automatic transcription of speech needs to deal with time-
varying processes of high reverberation and non-linear 
distortions, the current robust speech recognition techniques are 
not powerful enough to handle them, and new robust modeling 
approaches need to be developed.  
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