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ABSTRACT
This paper considers a method for speech emotion recogni-
tion by a max-margin framework incorporating a loss func-
tion based on a well-known model called the Watson and Tel-
legen’s emotion model. Each emotion is modeled by a single-
state hidden Markov model (HMM) that is trained by max-
imizing the minimum separation margin between emotions,
and the margin is scaled by a loss function. The framework
is optimized by the semi-definite programming. Experiments
were performed to evaluate the framework using the Berlin
database of emotional speech. The framework performed bet-
ter than other conventional training criteria for HMM such as
maximum likelihood estimation and maximum mutual infor-
mation estimation.

Index Terms— Speech emotion recognition, max-margin
framework, Watson and Tellegen’s emotion model

1. INTRODUCTION

Research in the recognition of human emotion is one of grow-
ing research fields in human-machine interface (HMI) and af-
fective computing [1]. Emotion recognition can be achieved
by analyzing various modalities: speech and facial expres-
sions [2], [3], gesture and body language [4] and bio infor-
mation such as electrocardiogram, electromyography, elec-
trodermal activity, skin temperature, blood volume pulse and
respiration [5]. Compared to other modalities, speech sig-
nal can be obtained more easily and inexpensively. For this
reason, it has a wider range of HMI applications: a service
robot that responds to the owner’s emotion, a computer game
that controls the game status by game-player’s emotion, and
an audio response system of the call center that automatically
connects the customer to the expert counsellor if the customer
is angry.
A number of methods to recognize the speech emotion

have been presented. Most methods recognize the emotion
by extracting features such as fundamental frequency, log en-
ergy, mel-frequency cepstral coefficients (MFCCs), pitch and

duration and recognizing selected features with various classi-
fiers: support vector machine (SVM), hidden Markov models
(HMMs), linear discriminant analysis, quadratic discriminant
analysis and k-nearest neighbors [2], [6], [7].
This paper considers a max-margin framework incorpo-

rating a loss function, called margin scaling [8], [9] for emo-
tion recognition. Most methods do not consider a loss func-
tion between emotions which quantifies the risk for predict-
ing a label given the correct label. We adopt margin scaling
to scale the minimum separation margin by the loss function.
The distance metric between emotions is defined by the Wat-
son and Tellegen’s emotion model (WTM) [10], and the loss
function is computed by the 1-norm of the distance metric.
The max-margin framework is known to have a good gen-
eralization ability [11], [12] thus it performs well in many
classification problems where there is a statistical mismatch
between training and testing data set.
We represent each emotion by a single-state HMM and

use the MFCCs for emotional features. The HMMs are
trained by the margin scaling which maximizes the minimum
separation margin scaled by a loss function. In the exper-
iment, we show that our method performs better than the
other conventional HMM training criteria such as maximum
likelihood (ML) and maximum mutual information (MMI).
The outline of the paper is as follows. First, we introduce

the emotion recognition using the HMMs in Section 2. Then,
in Section 3, we explain the max-margin framework and the
loss function based on the WTM. In Section 4, the perfor-
mance comparisons are evaluated on the Berlin database of
emotional speech (EMO-DB). Finally, we conclude and sum-
marize the paper in Section 5.

2. EMOTION RECOGNITION USING HMMS

Emotion recognition is a classification that predicts a label y∗
from a given speech featureX = {x1, ...,xT } ∈ X such that

y∗ = arg max
y∈Y

F (X,y; θ) (1)
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where the label y represents one of M emotions Y =
{y1, ..., yM}, and F is a discriminant function F : X × Y →
Rwhich is parameterized by θ. The featureX consisting of T
feature vectors which are in the D-dimensional vector space
X is extracted from an utterance. Emotion recognition using
HMMs is based on the framework of probabilistic graphical
models where the conditional distribution log pθ(Y|X ) is a
discriminant function. Thus, the decision criterion in Eq. (1)
becomes

y∗ = arg max
y∈Y

log pθ(y|X)

= arg max
y∈Y

log pθ(X|y)p(y) (2)

where p(y) is the prior probability of an emotion. We assume
equal prior probability 1/M for all emotions.
We also assume thatX represents a single emotion (not a

sequence of emotions) and the statistical characteristic of X
does not change over time. Thus, each emotion y is modeled
by a single-state HMM. The state is modeled by Gaussian
mixtures with its output probability for xt given by

pθ(xt|y) =
K∑

k=1

wkN(xt; μk,Λk) (3)

where wk, μk and Λk are the weight, mean vector and co-
variance matrix of the Gaussian k, respectively. The number
of Gaussians is denoted by K, and

∑K
k=1 wk = 1. Thus, the

discriminant function can be expressed as

F (X,y; θ) = log pθ(X|y)p(y) (4)

= log

[
1
M

T∏
t=1

K∑
k=1

wkN(xt; μk,Λk)p(y)

]

with the assumption that xt is independent and identically dis-
tributed.

3. A MAX-MARGIN FRAMEWORK FOR EMOTION
RECOGNITION

This section describes the method to estimate HMMs by a
max-margin framework incorporating a loss function, called
margin scaling. The estimation goal is to find θ using a set
of input-output pairs (Xn,yn), n = 1, ..., N so that the de-
cision criterion leads to the minimum prediction error. The
parameter θ is a vector whose elements are the parameters
of the Gaussian mixtures for all emotions. We adopt margin
scaling to consider the loss function between emotions.

3.1. Formulation

The margin scaling finds the parameter vector θ so that the
minimum separation margin ρ is maximized, and the sum of
the slack variables ξn is minimized under the constraints that

the difference between F (Xn,yn; θ) given the correct label
yn and F (Xn,y; θ) given the incorrect label y is at least
larger than the scaled margin subtracted by the slack variable
for all n = 1, ..., N as follows [8], [9], [13]:

min
ρ,ξ,θ:||θ||=γ

−ρ +
C

N

N∑
n=1

ξn

subject to d(Xn,y; θ) ≥ ρΔ(yn,y) − ξn, ∀n

y ∈ Y \ yn, ρ ≥ 0, ξn ≥ 0, ∀n (5)

where Δ(yn,y) is the loss function that quantifies the risk
for predicting y given the correct label yn and d(Xn,y; θ) =
F (Xn,yn; θ)−F (Xn,y; θ). Slack variables ξ = {ξ1, ..., ξN}
are introduced to allow errors in training data set, and the bal-
ance coefficient C controls the trade-off between margin
maximization and training error minimization. To make the
problem well-posed [9], we restrict the L2 norm of ||θ|| to
γ, (γ > 0). The margin is scaled byΔ(yn,y) to separate the
discriminant function of the true label yn more from that of
labels far from yn than that of labels close to yn.
The framework can be easily implemented in emotion

recognition. A sequential classification problem with large
size of Y will have many constraints, and thus it requires a
method to reduce the constraints. However, the size of Y in
emotion recognition is small, and thus the constraints do not
need to be reduced. Also, many speech emotion databases
are collected from a small number of actors. Thus, for such
a small sized database, the possibility of statistical mismatch
between training and testing data set is considerable. The
max-margin framework is known to perform well in this
environment [11], [12].
We use the semi-definite programming (SDP) in imple-

menting the margin scaling. The detail implementation proce-
dure of the SDP for the max-margin framework using HMMs
is described in [14].

3.2. Loss function for emotion recognition

We need a loss function that scales the separation margin in
Eq. (5). In margin scaling, the Hamming loss function which
is defined as the number of positions for which the corre-
sponding labels are different is widely used [8], [9]. However,
in emotion recognition, the Hamming loss becomes one for
all constraints since the label y represents only one emotion,
i.e. Δ(yn,y) = 1, yn �= y, ∀y, ∀n. Thus, the separation
margin is not scaled.
We use the WTM [10], illustrated in Fig. 1, for a loss

function between emotions. The model shows the trait or
tendency of a person in expressing an emotion and assumes
that each emotion is a combination of two major coordinates:
positive affect and negative affect. For example, happy is a
combination of high positive and low negative affect. From
this emotion model, we consider the distance between two
emotions; happy (mixture of high positive and low negative)
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is further away from sad (mixture of low positive and high
negative) than surprised (mixture of high positive and high
negative).
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Fig. 1. Watson and Tellegen’s model (WTM).

A self-report measurement of the positive and negative
affectivity for each emotion is presented in [10]. In this pa-
per, we define a simple measurement for each emotion based
on the WTM. We classify each emotion into one of 8 groups
(G1,...,G8) as in the Fig. 1 and assign the measurement ly =
(l1, l2) to each group where l1 is the measurement of positive
affectivity and l2 is the measurement of negative affectivity
for emotion y. In Table 1, the measurement for each emotion
group is shown. For example, happiness which is in the group
8 is represented by (−0.5,−0.5). Based on this table, the dis-
tance metric is defined as d(y1,y2) = ly1 − ly2 . We simply
define the loss function as a linear function of the 1-norm of
the distance metric:

Δ(y1,y2) = α||d(y1,y2)||1 + β (6)

where α and β are positive real constants. We use this loss
function to scale the separation margin in Eq. (5).

4. EXPERIMENT

Experiments were performed to evaluate the framework using
EMO-DB [15]. The EMO-DB was collected from five male
and female German actors expressing 7 emotions: anger, dis-
gust, fear, sadness, boredom, neutral and happiness. Each ac-
tor produced ten utterances: five short and five long sentences.
The database is comprised of 800 sentences: seven emotions
· ten actors · ten sentences + some second versions. By the
perception tests using 20 subjects, 494 sentences which are
more than 60% natural and can be classified correctly with
80% accuracy were chosen for the experiment.

negative positive
affectivity (l1) affectivity (l2)

Group 1 (G1) 0 1
Group 2 (G2) 0.5 0.5
Group 3 (G3) 1 0
Group 4 (G4) 0.5 -0.5
Group 5 (G5) 0 -1
Group 6 (G6) -0.5 -0.5
Group 7 (G7) -1 0
Group 8 (G8) -0.5 -0.5

Table 1. Measurement of positive and negative affectivity for
each emotion group.

ML ML→MMI ML→MS
1-mix 25.49 32.56 62.59
2-mix 54.66 60.13 69.28
4-mix 64.91 70.45 75.68
8-mix 70.96 72.73 78.67
16-mix 76.37 77.27 83.97
32-mix 78.46 81.17 86.32

Table 2. Average accuracy(%) of correct classification on the
testing data for ML, MMI, and MS.

Seven emotions of EMO-DB were assigned to one of 8
groups as in the Fig. 1: anger(A) to G3, disgust(D) to G3,
fear(F) to G3, sadness(S) to G4, boredom(B) to G5, neu-
tral(N) to G6 and happiness(H) to G8. Although anger and
disgust are not displayed in the Fig. 1, we assumed that they
have high negative affectivity; in other words, they are in G3.
Emotion features consisted of 39 dimensions: 12 MFCCs,

log energy and the corresponding delta and acceleration coef-
ficients. Each emotion was modeled by a single-state HMM
with different number of Gaussian mixture components. We
assumed that each Gaussian mixture component has diagonal
covariance matrices. The database was divided into five folds.
Four male and female speakers were in training data set, and
the remaining two speakers were in testing data set and the
development data set which was used for tuning the param-
eters. The experiment for each fold was performed, and the
average results across all trials were computed.
The baseline ML models were trained by the standard

Baum-Welch algorithm using HMM toolkit 3.2 [16]. Based
on the ML models, θ was updated by the MMI training al-
gorithm [17] and margin scaling (MS) using the training data
set. In the margin-scaling experiment, the parameter C, γ,
α and β were manually tuned for the best performance us-
ing the development data set. The emotion recognition was
performed by Eq. (2) using the testing data set.
The results of each training method for different number

of Gaussian mixture components are summarized in Table
2. It shows that the margin scaling considerably improves
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the recognition accuracy compared to the ML and MMI. As
the number of Gaussian mixture components increased, the
recognition accuracy also increased. For small number of
components such as 1-mix, 2-mix, 4-mix and 8-mix, improve-
ments larger than 10% were observed. For larger number of
components such as 16-mix and 32-mix, the MS still yielded
about 7% improvement. The best accuracy was 86.32%.
We computed the confusion matrix which shows the ac-

curacies between emotions where the first column indicates
the true emotions that the speakers expressed, and the first
row indicates the recognized emotions. In Table 3, the con-
fusion matrix of the MS for 32-mix is shown. We can see
the effect of the loss function from the confusion matrix. The
label with high loss is separated from the correct label more
than the label with low loss by scaling the separation mar-
gin with loss function. For example, the loss of happy (in
G8) is higher than that of sadness (in G4) given boredom (in
G5). Thus, given the true emotion of boredom, the rate of pre-
dicting happy (0%) was lower than that of predicting sadness
(26.09%) as in Table 3. This means that we could reduce the
possibility of predicting a label with high risk.

A D F S B N H
A 100 0 0 0 0 0 0
D 5.00 95.00 0 0 0 0 0
F 0 0 100 0 0 0 0
S 25.00 0 0 66.67 0 0 8.33
B 13.04 0 0 26.09 60.87 0 0
N 0 0 0 0 0 100 0
H 0 0 0 0 0 0 100

Table 3. Confusion matrix of 7 emotions: anger(A), dis-
gust(D), fear(F), sadness(S), boredom(B), neutral(N) and
happiness(H).

5. CONCLUSION

We presented a method for speech emotion recognition by a
max-margin framework incorporating a loss function based
on the WTM. We defined a distance metric between two
emotions, and the loss function was computed by the 1-
norm of the distance metric. Experiments were performed on
the EMO-DB. Each emotion was modeled by a single-state
HMM which was estimated by three training methods. The
results showed that the max-margin framework incorporating
the loss function, called margin scaling, considerably im-
proved the recognition rate over other methods: the ML and
the MMI.
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