
CLASS-DEPENDENT AND DIFFERENTIAL HUFFMAN CODING OF COMPRESSED
FEATURE PARAMETERS FOR DISTRIBUTED SPEECH RECOGNITION

Young Han Lee, Deok Su Kim, and Hong Kook Kim

Department of Information and Communications
Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea

{cpumaker, dskim867, hongkook}@gist.ac.kr

ABSTRACT

In this paper, we propose an entropy coding method for
compressing quantized mel-frequency cepstral coefficients
(MFCCs) used for distributed speech recognition (DSR). In the
European Telecommunication Standards Institute (ETSI) extended
DSR standard, MFCCs are compressed with additional parameters
such as pitch and voicing class. The entropy of compressed
MFCCs in each analysis frame varies according to the voicing
class of the frame, thereby enabling the design of different
Huffman trees for MFCCs according to voicing class, referred to
here as class-dependent Huffman coding. In addition to the voicing
class, the correlation in subvector-wise is utilized for Huffman
coding, which is called subvector-wise Huffman coding. It is also
explored that differential Huffman coding can further enhance a
coding gain against class-dependent Huffman coding and
subvector-wise Huffman coding. Based on the benefits above,
hybrid types of Huffman coding by combining class-dependent
and subvector-wise with differential Huffman coding are compared
in this paper. Subsequent experiments show that the average bit-
rate of subvector-wise differential Huffman coding is measured at
33.93 bits/frame, whereas that of a traditional Huffman coding
which does not consider voicing class and encodes with a single
Huffman coding tree for all the subvectors is at 42.22 bits/frame.

Index Terms— Distributed speech recognition, MFCC,
Huffman coding, class-dependent, subvector-wise, differential
coding

1. INTRODUCTION

As technologies associated with wireless network systems have
advanced, the demand for wireless and mobile devices has also
dramatically increased. These portable devices are typically small
in size and difficult to manipulate. Thus, as a promising user
interface to make them easier to use, speech recognition can take
the place of a keyboard or a touch pad on these devices since voice
input only requires a microphone [1]. A major problem, however,
is that the high computational complexity of speech recognition is
insufficient for most portable devices. Thus, a new approach,
distributed speech recognition (DSR), was developed to implement
speech recognition in portable devices. In particular, the European
Telecommunication Standards Institute (ETSI) has published
several versions of DSR front-end standards; the most recent
version was the extended front-end defined in [2][3]. Basically,

DSR splits the functions of speech recognition into a front-end and
a back-end, where the former is performed in a portable device and
the latter in a designated speech recognition server having a high
computational power. The primary purpose of the DSR front-end
is to extract speech recognition features such as the mel-frequency
cepstral coefficients (MFCCs) that are commonly used for speech
recognition. Then, the front-end compresses the MFCCs into as
small a number of bits as possible, and then transmits them to the
speech recognition server over a network.

When channel errors occur, however, DSR performance can
degrade since the MFCCs decoded at the server become distorted;
this problem can be somewhat overcome by adding a channel
coder to the MFCC bitstream. In general, assigning more bits to a
channel coder improves the quality of speech recognition [4].
Therefore, it is important to reduce the bits for MFCCs to
accommodate such channel coding bits. Some techniques using
Huffman coding have been proposed for quantizing MFCCs to
reduce the overall bit-rate [5][6]. For example, the compression of
MFCCs was done in [5] by applying a 2-dimensional discrete
cosine transform (DCT) on blocks of feature vectors, followed by
uniform scalar quantization, with subsequent run-length and
Huffman coding. By performing such a series of compression
schemes, the bit-rate for MFCC compression could be reduced to
15.6 bits/frame. Alternatively, the entropy coding proposed in [6]
was applied to MFCCs extracted under the ETSI DSR framework,
where one Huffman table [7] was used for the entropy coding of
all MFCC indices. In this design, the Huffman coding reduced the
MFCC compression bit-rate from 44 to 34.40 bits/frame.

In this paper, we first explore the entropy of compressed
MFCCs and energy in order to further improve the efficiency of
Huffman coding. In the extended DSR front-end, the feature
parameters are composed of 13 MFCCs, a log energy, a pitch
period, and a voicing class indicator for each frame. It is measured
that the entropy of feature parameters varies according to the
voicing class. This variance implies that MFCCs and log energy in
the same class have higher redundancies and thus the bit-rates of
the compressed MFCCs and log energy can be further reduced
using an entropy coding method, such as Huffman coding.
Therefore, we propose a class-dependent Huffman coding method
to further obtain a coding gain over the compression of MFCCs
and log energy according to voicing class. In addition to such
class-dependent Huffman coding, it utilizes the property that the
correlation between MFCC subvectors of the same frame is lower
than the correlation of each subvector between frames, which
brings us to consider Huffman coding in subvector-wise. After that,
we also propose hybrid types of Huffman coding by combining

4165978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

class-dependent and subvector-wise Huffman coding with
differential Huffman coding based on the entropy comparison.
Finally, we compare the bit-rate reduction for the different
Huffman coding methods.

The remainder of this paper is organized as follows. In Section
2, the extended DSR front-end is briefly reviewed; in Section 3,
we describe four different Huffman coding methods such as a
traditional, class-dependent, subvector-wise, and differential
Huffman coding. And then, we can combine class-dependent
coding and subvector-wise coding with differential coding to take
advantages of each method for compressing feature parameters. In
Section 4, the performances of the proposed hybrid Huffman
coding methods are measured and compared with those of the
other Huffman coding methods. Finally, we conclude this paper in
Section 5.

2. QUANTIZATION OF FEATURE PARAMETERS

In a typical DSR system, the front-end is located at the terminal
and is connected over a data network to a remote back-end
recognition server. Fig. 1 shows the extended DSR front-end
standardized by ETSI [2]. The feature extraction is performed with
16 parameters, comprised of 13 MFCCs, a log-energy, a pitch
period, and a voicing class indicator for each analysis frame. These
extracted features are then compressed and transmitted to the
server via a dedicated channel, where they are subsequently
decoded and passed into the back-end for speech recognition.

The feature compression algorithm for DSR is as follows. The
MFCCs and log energy are split into seven 2-dimsional subvectors
and each subvector is directly quantized using a vector quantizer.
Table 1 shows the feature pairing and the number of bits assigned
to each subvector. The resulting set of index values after
quantizing all the subvectors is then used to represent the
corresponding speech parameters. The closest centroid of the
vector quantizer can then be found using a weighted Euclidean
distance to determine the index. In other words, T

ii mymy)(),(1 ,
a subvector for the m-th analysis frame, is quantized as

1,

1

1,
)(

)(
)(ii

j
i

iii
j q

my

my
md (1)

and

12,,2,0,)()(argmin)(1,1,1,

0

1,
1,

imdWmdmidx ii
j

iiTii
j

Nj

ii

ii

 (2)

where 1,ii
jq denotes the j-th centroid in the codebook 1,iiQ , 1,iiN

is the size of the codebook , 1i iQ , 1,iiW is a weight matrix applied
to the codebook search corresponding to the codebook 1,iiQ , and

)(1, midx ii denotes the codebook index chosen to represent the
subvector T

ii mymy)(),(1 . The size of each pairing is 64 for the
subvectors of C1–C12, and 256 for the subvector of C0 and log
energy (log-E). Consequently, 44 bits are required to quantize all
the feature parameters for each frame; these indices are then
transmitted to the back-end.

In addition to speech recognition parameters such as MFCCs
and log energy, pitch and voicing class information are used to
indicate the voicing type of each frame, where each frame is
classified into one of four classes such as non-speech, unvoiced
speech, mixed-voiced speech, and (fully) voiced speech [3]. For
non-speech or unvoiced speech, the pitch index is set to zero
because there is no pitch period to be detected for these types of
speech. In order to discriminate non-speech from unvoiced speech,
the voicing class index is set to 0 or 1 for non-speech or for
unvoiced speech, respectively. Conversely, the pitch index for
mixed-voiced speech or (fully) voiced speech is set to an actual
pitch period estimated from speech; the voicing class index is set
to 0 or 1 for mixed-voiced speech or (fully) voiced speech,
respectively.

3. PROPOSED HUFFMAN CODING METHODS

3.1. Traditional Huffman coding

A traditional Huffman coding applies the same Huffman table to
each feature parameter without regarding to voicing class, which is
similar to the work proposed in [6]. In fact, two Huffman tables are
generated in this paper; one is for the MFCC subvectors and the
other for the subvector of C0 and log-E.

3.2. Class-dependent Huffman coding

The entropy of MFCCs and log energy varies according to the
voicing class. This variance implies that MFCCs and log energy in
the same class have higher redundancies and thus the bit-rate of
the compressed MFCCs and log energy can be further reduced
using Huffman coding that is designed differently according to
voicing class. To this end, we classify the MFCC subvectors and
the subvector of C0 and log energy into four groups depending on
their voicing class, and then construct two Huffman tables for each
voicing class; one is for the MFCC subvectors and the other for the
subvector of C0 and log-E.

Fig. 2(a) shows a block diagram of class-dependent Huffman
coding. First, the extracted MFCCs and log energy for a given
analysis frame are quantized as described in Section 2. Then,
MFCC subvector indices and the subvector index of C0 and log-E
are further compressed using the Huffman tables corresponding to
the voicing class of the frame.

Table 1. Split vector quantization codebook for feature pairing.

Codebook Pairings Size (bits)
Q0,1 ~ Q10,11 (C1,C2) ~ (C11,C12) 6

Q12,13 (C0,log-E) 8

Figure 1: Block diagram of the ETSI DSR front-end defined in [2].

4166

3.3. Subvector-wise Huffman coding

The entropy of MFCCs and log energy varies according to the
subvector. This variance implies that MFCCs and log energy also
have higher redundancies compared to traditional Huffman coding
and thus the bit-rate of the compressed MFCCs and log energy can
be further reduced using Huffman trees that are designed
differently according to subvector. Fig. 2(b) shows a block
diagram of subvector-wise Huffman coding. The extracted MFCCs
and log energy are quantized as described. Then, each subvector is
further compressed using the Huffman tree corresponding to the
subvector of the frame.

3.4. Differential Huffman coding

In order to reduce the bit-rate, we then investigate the redundancy
of feature vectors in time that can be utilized. For this task, we first
obtain the MFCCs and log energy for each frame, and then
quantize them as described in Section 2. Next, we obtain the time
difference of each compressed index,)(1, midx ii , as

12,,2,0),1()()(1,1,1, imidxmidxmidx iiiiii . (3)

Finally, the differential Huffman coding method shown in Fig. 2(c)
is applied to)(1, midx ii .

3.5 Entropy comparison

In order to investigate how much further the bit-rate of the
compressed subvector indices can be reduced using Huffman
coding, we evaluated the entropy of feature subvector indices
according to traditional Huffman coding, class-dependent Huffman
coding, and differential coding. Table 2 shows the measured
entropy for each Huffman coding method. For this experiment, we
used the TIMIT database [8] (clean, 16-bit, mono and sampled at
16 kHz) for training and testing, where 4,622 utterances and 1,680
utterances were used to generate the Huffman trees and to evaluate
the performance, respectively.

As shown in the first row of the table, traditional Huffman
coding required 5.82 bits/frame and 7.06 bits/frame for each of the
MFCC subvectors, C1–C12, and the subvector of C0 and log-E,
respectively. On the other hand, 5.75 bits/frame and 6.42
bits/frame were required for each of C1–C12 and the subvector of
C0 and log-E, respectively, in case of class-dependent Huffman
coding. The classification percentages of non-speech, unvoiced
speech, mixed-voiced speech, and fully voiced speech were
measured at 4.06 %, 79.57 %, 0.81 %, and 15.56 %, respectively.
These percentages were reflected to calculate the weighted average
bits/frame of class-dependent Huffman coding. In case of
subvector-wise Huffman coding, 5.45 bits/frame and 7.06
bits/frame were required for each of C1–C12 and the subvector of
C0 and log-E. In addition, 4.89 bits/frame and 5.10 bits/frame were
required for each of the subvectors of C1–C12 and the subvector of
C0 and log-E when differential Huffman coding was applied.

3.6. Hybrid Huffman coding

From the entropy comparison in Table 2, it is shown that the
MFCC subvectors have smaller entropy when differential Huffman
coding is applied. It is expected from the table that hybrid types of
Huffman coding by combining class-dependent and subvector-
wise coding methods with the differential Huffman coding method.
Figs. 3(a) and 3(b) show the proposed hybrid Huffman coding
according to voicing class and subvector-wise, respectively. For
the class-dependent differential Huffman coding, the differential
coding is applied to the subvectors in frame-wise according to
voicing class. On the other hand, the subvector-wise differential
Huffman coding is applied in subvector-wise. Table 3 shows the
entropy comparison of the hybrid types of Huffman coding. It is
shown from the table that proposed hybrid Huffman coding
according to subvector has smaller entropy than any Huffman
coding method shown in Table 2 while the hybrid Huffman coding
according to voicing class has a little larger entropy compared to
differential Huffman coding.

Table 2. Average entropy comparison (bits/frame) of each
subvector for the different Huffman coding methods.

Method C1–C12 (C0,log-E)
Traditional Huffman coding 5.82 7.06

Class-
dependent
Huffman
coding

Non-speech 5.37 3.49
Unvoiced speech 5.63 6.49

Mixed-voiced speech 5.66 6.46
(Fully) Voiced speech 5.88 6.70

Average 5.75 6.42

Subvector-
wise

Huffman
coding

(C1,C2) 5.06

7.06

(C3,C4) 5.31
(C5,C6) 5.61
(C7,C8) 5.62
(C9,C10) 5.19
(C11,C12) 5.39
Average 5.45 7.06

Differential Huffman coding 4.89 5.10

Figure 2: Block diagrams of (a) class-dependent Huffman coding,
(b) subvector-wise Huffman coding, and (c) differential Huffman
coding.

Figure 3: Block diagram of the hybrid Huffman coding methods
according to (a) voicing class and (b) subvector-wise.

4167

4. PERFORMANCE EVALUATION
In this section, we compared the performance of the proposed
hybrid Huffman coding methods with that of no entropy coding,
traditional Huffman coding, class-dependent Huffman coding,
subvector-wise Huffman coding, and differential Huffman coding
in a view of their average number of bits per frame. For the
original vector quantization, the average number of bits was
measured at 44 bits/frame since 6 subvectors for C1–C12 were
quantized with 6 bits each and 1 subvector for C0 and log-E was
quantized with 8 bits.

Table 4 shows the comparison of average number of bits/frame
required for the different Huffman coding methods. As shown in
the last row of the table, the proposed subvector-wise differential
Huffman coding method gave an average bit reduction of 1.20,
1.05, 0.95, 0.69, 0.11, and 0.20 bits/frame for the subvectors of
C1–C12, compared to the average number of bits for no entropy
coding, traditional Huffman coding, class-dependent Huffman
coding, subvector-wise Huffman coding, differential Huffman
coding, and class-dependent differential Huffman coding method,
respectively. It was also shown from the table that applying
subvector-wise differential Huffman coding method to the
subvector of C0 and log-E provided average reductions of 2.86,
1.98, 1.32, 1.98, 0.0, and 0.12 bits/frame, compared to the same
respective conditions.

Finally, Fig. 4 summarizes the average number of bits/frame
for the different Huffman coding methods including no entropy
coding. As a result, there were 33.93 bits/frame when the proposed
hybrid Huffman coding method was applied, which corresponded
to bit-rate reductions of 10.07 bits/frame, 8.29 bits/frame, 7.20
bits/frame, 6.12 bits/frame and 0.67 bits/frame compared to no
entropy coding, traditional Huffman coding, class-dependent
Huffman coding, subvector-wise Huffman coding, differential
Huffman coding, and hybrid Huffman coding according to voicing
class, respectively.

5. CONCLUSION
In this paper, we proposed a hybrid Huffman coding of MFCC
feature vectors for DSR according to voicing class or subvectors
and differential coding as a means of further reducing the bit-rate
of compressed MFCCs. The proposed method was based on the
subvector-wise property of feature distribution as well as the
redundancy reduction in time differences of features. By
combining these properties, we designed seven differential
Huffman tables according to the subvectors. The proposed
subvector-wise differential Huffman coding method provided an
average bit-rate reduction of 10.07 bits/frame compared with the
case when no entropy coding was employed in the DSR.
Moreover, we had a bit-rate reduction of 0.67 bits/frame compared
to differential Huffman coding.

6. ACKNOWLEDEGEMENT
This work was supported in part by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (MEST)
(R01-2008-000-10243-0), and by the Ministry of Knowledge Economy
under the Information Technology Research Center support program
supervised by the Institute of Information Technology Advancement (IITA-
2008-C1090-0801-0017).

7. REFERENCES
[1] N. Srinivasamurthy, A. Ortega, and S. Narayanan, “Efficient scalable
encoding for distributed speech recognition,” Speech Communication, vol.
48, no. 8, pp. 888–902, Aug. 2006.
[2] ETSI ES 202 211, Speech Processing, Transmission and Quality
Aspects (STQ); Distributed Speech Recognition; Extended Front-end
Feature Extraction Algorithm; Compression Algorithms; Back-end Speech
Reconstruction Algorithm, Nov. 2003.
[3] A. Sorin, et al., “The ETSI extended distributed speech recognition
(DSR) standards: Client side processing and tonal language recognition
evaluation,” in Proc. of ICASSP, pp. 129–132, May 2004.
[4] Z.-H. Tan, P. Dalsgaard, and B. Lindberg, “Automatic speech
recognition over error-prone wireless networks,” Speech Communication,
vol. 47, nos. 1-2, pp. 220-242, Sept.-Oct. 2005.
[5] Q. Zhu and A. Alwan, “An efficient and scalable 2D DCT-based feature
coding scheme for remote speech recognition,” in Proc. of ICASSP, pp.
113–116, May 2001.
[6] B. J. Borgstrom and A. Alwan, “A packetization and variable bitrate
interframe compression scheme for vector quantizer-based distributed
speech recognition,” in Proc. of Interspeech, pp. 578–581, Aug. 2007.
[7] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. of the IRE, vol. 40, pp. 1098–1101, Sept. 1952.
 [8] J. S. Garofolo, Getting Started with the DARPA TIM1T CD-ROM: An
Acoustic Phonetic Continuous Speech Database, National Institute of
Standards and Technology (NIST), Gaithersburg, MD, Tech. Rep., 1988.

Figure 4: Performance comparison in the average number of bits
for the different Huffman coding methods.

Table 4. Average number of bits/frame of each subvector for the
different Huffman coding methods.

Method C1–C12 (C0,log-E)
No entropy coding 6 8

Traditional Huffman coding 5.85 7.12
Class-dependent Huffman coding 5.78 6.46
Subvector-wise Huffman coding 5.49 7.12

Differential Huffman coding 4.91 5.14
Hybrid Huffman coding

Class-dependent Huffman coding 5.00 5.26
Subvector-wise Huffman coding 4.80 5.14

Table 3. Average entropy comparison (bits/frame) of hybrid
Huffman coding methods.

Subvector Normal Differential

Class-dependent
differential coding

(C1,C12) 5.78 4.95
(C0, log-E) 6.46 5.24

Total 40.90 34.94

Subvector-wise
differential coding

(C1,C2) 5.06 4.01
(C3,C4) 5.31 4.12
(C5,C6) 5.61 5.02
(C7,C8) 5.62 5.22
(C9,C10) 5.19 4.74
(C11,C12) 5.39 5.53

(C0, log-E) 7.06 5.10
Total 39.78 33.74

4168

