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ABSTRACT 

In this paper, we propose an entropy coding method for 
compressing quantized mel-frequency cepstral coefficients 
(MFCCs) used for distributed speech recognition (DSR). In the 
European Telecommunication Standards Institute (ETSI) extended 
DSR standard, MFCCs are compressed with additional parameters 
such as pitch and voicing class. The entropy of compressed 
MFCCs in each analysis frame varies according to the voicing 
class of the frame, thereby enabling the design of different 
Huffman trees for MFCCs according to voicing class, referred to 
here as class-dependent Huffman coding. In addition to the voicing 
class, the correlation in subvector-wise is utilized for Huffman 
coding, which is called subvector-wise Huffman coding. It is also 
explored that differential Huffman coding can further enhance a 
coding gain against class-dependent Huffman coding and 
subvector-wise Huffman coding. Based on the benefits above, 
hybrid types of Huffman coding by combining class-dependent 
and subvector-wise with differential Huffman coding are compared 
in this paper. Subsequent experiments show that the average bit-
rate of subvector-wise differential Huffman coding is measured at 
33.93 bits/frame, whereas that of a traditional Huffman coding 
which does not consider voicing class and encodes with a single 
Huffman coding tree for all the subvectors  is at 42.22 bits/frame. 

Index Terms— Distributed speech recognition, MFCC, 
Huffman coding, class-dependent, subvector-wise, differential 
coding

1. INTRODUCTION 

As technologies associated with wireless network systems have 
advanced, the demand for wireless and mobile devices has also 
dramatically increased. These portable devices are typically small 
in size and difficult to manipulate. Thus, as a promising user 
interface to make them easier to use, speech recognition can take 
the place of a keyboard or a touch pad on these devices since voice 
input only requires a microphone [1]. A major problem, however, 
is that the high computational complexity of speech recognition is 
insufficient for most portable devices. Thus, a new approach, 
distributed speech recognition (DSR), was developed to implement 
speech recognition in portable devices. In particular, the European 
Telecommunication Standards Institute (ETSI) has published 
several versions of DSR front-end standards; the most recent 
version was the extended front-end defined in [2][3]. Basically, 

DSR splits the functions of speech recognition into a front-end and 
a back-end, where the former is performed in a portable device and 
the latter in a designated speech recognition server having a high 
computational power. The primary purpose of the DSR front-end 
is to extract speech recognition features such as the mel-frequency 
cepstral coefficients (MFCCs) that are commonly used for speech 
recognition. Then, the front-end compresses the MFCCs into as 
small a number of bits as possible, and then transmits them to the 
speech recognition server over a network.  

When channel errors occur, however, DSR performance can 
degrade since the MFCCs decoded at the server become distorted; 
this problem can be somewhat overcome by adding a channel 
coder to the MFCC bitstream. In general, assigning more bits to a 
channel coder improves the quality of speech recognition [4]. 
Therefore, it is important to reduce the bits for MFCCs to 
accommodate such channel coding bits. Some techniques using 
Huffman coding have been proposed for quantizing MFCCs to 
reduce the overall bit-rate [5][6]. For example, the compression of 
MFCCs was done in [5] by applying a 2-dimensional discrete 
cosine transform (DCT) on blocks of feature vectors, followed by 
uniform scalar quantization, with subsequent run-length and 
Huffman coding. By performing such a series of compression 
schemes, the bit-rate for MFCC compression could be reduced to 
15.6 bits/frame. Alternatively, the entropy coding proposed in [6] 
was applied to MFCCs extracted under the ETSI DSR framework, 
where one Huffman table [7] was used for the entropy coding of 
all MFCC indices. In this design, the Huffman coding reduced the 
MFCC compression bit-rate from 44 to 34.40 bits/frame. 

In this paper, we first explore the entropy of compressed 
MFCCs and energy in order to further improve the efficiency of 
Huffman coding. In the extended DSR front-end, the feature 
parameters are composed of 13 MFCCs, a log energy, a pitch 
period, and a voicing class indicator for each frame. It is measured 
that the entropy of feature parameters varies according to the 
voicing class. This variance implies that MFCCs and log energy in 
the same class have higher redundancies and thus the bit-rates of 
the compressed MFCCs and log energy can be further reduced 
using an entropy coding method, such as Huffman coding. 
Therefore, we propose a class-dependent Huffman coding method 
to further obtain a coding gain over the compression of MFCCs 
and log energy according to voicing class. In addition to such 
class-dependent Huffman coding, it utilizes the property that the 
correlation between MFCC subvectors of the same frame is lower 
than the correlation of each subvector between frames, which 
brings us to consider Huffman coding in subvector-wise. After that, 
we also propose hybrid types of Huffman coding by combining 
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class-dependent and subvector-wise Huffman coding with 
differential Huffman coding based on the entropy comparison. 
Finally, we compare the bit-rate reduction for the different 
Huffman coding methods. 

The remainder of this paper is organized as follows. In Section 
2, the extended DSR front-end is briefly reviewed; in Section 3, 
we describe four different Huffman coding methods such as a 
traditional, class-dependent, subvector-wise, and differential 
Huffman coding. And then, we can combine class-dependent 
coding and subvector-wise coding with differential coding to take 
advantages of each method for compressing feature parameters. In
Section 4, the performances of the proposed hybrid Huffman 
coding methods are measured and compared with those of the 
other Huffman coding methods. Finally, we conclude this paper in 
Section 5.

2. QUANTIZATION OF FEATURE PARAMETERS  

In a typical DSR system, the front-end is located at the terminal 
and is connected over a data network to a remote back-end 
recognition server. Fig. 1 shows the extended DSR front-end 
standardized by ETSI [2]. The feature extraction is performed with 
16 parameters, comprised of 13 MFCCs, a log-energy, a pitch 
period, and a voicing class indicator for each analysis frame. These 
extracted features are then compressed and transmitted to the 
server via a dedicated channel, where they are subsequently 
decoded and passed into the back-end for speech recognition.  

The feature compression algorithm for DSR is as follows. The 
MFCCs and log energy are split into seven 2-dimsional subvectors 
and each subvector is directly quantized using a vector quantizer. 
Table 1 shows the feature pairing and the number of bits assigned 
to each subvector. The resulting set of index values after 
quantizing all the subvectors is then used to represent the 
corresponding speech parameters. The closest centroid of the 
vector quantizer can then be found using a weighted Euclidean 
distance to determine the index. In other words, T
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where 1,ii
jq  denotes the j-th centroid in the codebook 1,iiQ , 1,iiN

is the size of the codebook , 1i iQ , 1,iiW  is a weight matrix applied 
to  the codebook search corresponding to the codebook 1,iiQ , and 

)(1, midx ii  denotes the codebook index chosen to represent the 
subvector T

ii mymy )(),( 1 . The size of each pairing is 64 for the 
subvectors of C1–C12, and 256 for the subvector of C0 and log 
energy (log-E). Consequently, 44 bits are required to quantize all 
the feature parameters for each frame; these indices are then 
transmitted to the back-end. 

In addition to speech recognition parameters such as MFCCs 
and log energy, pitch and voicing class information are used to 
indicate the voicing type of each frame, where each frame is 
classified into one of four classes such as non-speech, unvoiced 
speech, mixed-voiced speech, and (fully) voiced speech [3]. For 
non-speech or unvoiced speech, the pitch index is set to zero 
because there is no pitch period to be detected for these types of 
speech. In order to discriminate non-speech from unvoiced speech, 
the voicing class index is set to 0 or 1 for non-speech or for 
unvoiced speech, respectively. Conversely, the pitch index for 
mixed-voiced speech or (fully) voiced speech is set to an actual 
pitch period estimated from speech; the voicing class index is set 
to 0 or 1 for mixed-voiced speech or (fully) voiced speech, 
respectively. 

3. PROPOSED HUFFMAN CODING METHODS 

3.1. Traditional Huffman coding 

A traditional Huffman coding applies the same Huffman table to 
each feature parameter without regarding to voicing class, which is 
similar to the work proposed in [6]. In fact, two Huffman tables are 
generated in this paper; one is for the MFCC subvectors and the 
other for the subvector of C0 and log-E.  

3.2. Class-dependent Huffman coding 

The entropy of MFCCs and log energy varies according to the 
voicing class. This variance implies that MFCCs and log energy in 
the same class have higher redundancies and thus the bit-rate of 
the compressed MFCCs and log energy can be further reduced 
using Huffman coding that is designed differently according to 
voicing class. To this end, we classify the MFCC subvectors and 
the subvector of C0 and log energy into four groups depending on 
their voicing class, and then construct two Huffman tables for each 
voicing class; one is for the MFCC subvectors and the other for the 
subvector of C0 and log-E. 

Fig. 2(a) shows a block diagram of class-dependent Huffman 
coding. First, the extracted MFCCs and log energy for a given 
analysis frame are quantized as described in Section 2. Then, 
MFCC subvector indices and the subvector index of C0 and log-E 
are further compressed using the Huffman tables corresponding to 
the voicing class of the frame. 

Table 1. Split vector quantization codebook for feature pairing. 

Codebook Pairings Size (bits) 
Q0,1  ~ Q10,11 (C1,C2) ~ (C11,C12) 6 

Q12,13 (C0,log-E) 8

Figure 1: Block diagram of the ETSI DSR front-end defined in [2].
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3.3. Subvector-wise Huffman coding  

The entropy of MFCCs and log energy varies according to the 
subvector. This variance implies that MFCCs and log energy also 
have higher redundancies compared to traditional Huffman coding 
and thus the bit-rate of the compressed MFCCs and log energy can 
be further reduced using Huffman trees that are designed 
differently according to subvector. Fig. 2(b) shows a block 
diagram of subvector-wise Huffman coding. The extracted MFCCs 
and log energy are quantized as described. Then, each subvector is 
further compressed using the Huffman tree corresponding to the 
subvector of the frame. 

3.4. Differential Huffman coding  

In order to reduce the bit-rate, we then investigate the redundancy 
of feature vectors in time that can be utilized. For this task, we first 
obtain the MFCCs and log energy for each frame, and then 
quantize them as described in Section 2. Next, we obtain the time 
difference of each compressed index, )(1, midx ii , as   

12,,2,0),1()()( 1,1,1, imidxmidxmidx iiiiii .     (3) 

Finally, the differential Huffman coding method shown in Fig. 2(c) 
is applied to )(1, midx ii .

3.5 Entropy comparison 

In order to investigate how much further the bit-rate of the 
compressed subvector indices can be reduced using Huffman 
coding, we evaluated the entropy of feature subvector indices 
according to traditional Huffman coding, class-dependent Huffman 
coding, and differential coding. Table 2 shows the measured 
entropy for each Huffman coding method. For this experiment, we 
used the TIMIT database [8] (clean, 16-bit, mono and sampled at 
16 kHz) for training and testing, where 4,622 utterances and 1,680 
utterances were used to generate the Huffman trees and to evaluate 
the performance, respectively.  

As shown in the first row of the table, traditional Huffman 
coding required 5.82 bits/frame and 7.06 bits/frame for each of the 
MFCC subvectors, C1–C12, and the subvector of C0 and log-E, 
respectively. On the other hand, 5.75 bits/frame and 6.42 
bits/frame were required for each of C1–C12 and the subvector of 
C0 and log-E, respectively, in case of class-dependent Huffman 
coding. The classification percentages of non-speech, unvoiced 
speech, mixed-voiced speech, and fully voiced speech were 
measured at 4.06 %, 79.57 %, 0.81 %, and 15.56 %, respectively. 
These percentages were reflected to calculate the weighted average 
bits/frame of class-dependent Huffman coding. In case of 
subvector-wise Huffman coding, 5.45 bits/frame and 7.06 
bits/frame were required for each of C1–C12 and the subvector of 
C0 and log-E.  In addition, 4.89 bits/frame and 5.10 bits/frame were 
required for each of the subvectors of C1–C12 and the subvector of 
C0 and log-E when differential Huffman coding was applied. 

3.6. Hybrid Huffman coding

From the entropy comparison in Table 2, it is shown that the 
MFCC subvectors have smaller entropy when differential Huffman 
coding is applied. It is expected from the table that hybrid types of 
Huffman coding by combining class-dependent and subvector-
wise coding methods with the differential Huffman coding method. 
Figs. 3(a) and 3(b) show the proposed hybrid Huffman coding 
according to voicing class and subvector-wise, respectively. For 
the class-dependent differential Huffman coding, the differential 
coding is applied to the subvectors in frame-wise according to 
voicing class. On the other hand, the subvector-wise differential 
Huffman coding is applied in subvector-wise. Table 3 shows the 
entropy comparison of the hybrid types of Huffman coding. It is 
shown from the table that proposed hybrid Huffman coding 
according to subvector has smaller entropy than any Huffman 
coding method shown in Table 2 while the hybrid Huffman coding 
according to voicing class has a little larger entropy compared to 
differential Huffman coding. 

Table 2. Average entropy comparison (bits/frame) of each 
subvector for the different Huffman coding methods. 

Method C1–C12 (C0,log-E) 
Traditional Huffman coding 5.82 7.06 

Class-
dependent 
Huffman 
coding 

Non-speech 5.37 3.49 
Unvoiced speech 5.63 6.49 

Mixed-voiced speech 5.66 6.46 
(Fully) Voiced speech 5.88 6.70 

Average 5.75 6.42 

Subvector-
wise

Huffman 
coding 

(C1,C2) 5.06 

7.06

(C3,C4) 5.31 
(C5,C6) 5.61 
(C7,C8) 5.62 
(C9,C10) 5.19 
(C11,C12) 5.39 
Average 5.45 7.06 

Differential Huffman coding 4.89 5.10 

Figure 2: Block diagrams of (a) class-dependent Huffman coding, 
(b) subvector-wise Huffman coding, and (c) differential Huffman
coding.

Figure 3: Block diagram of the hybrid Huffman coding methods 
according to (a) voicing class and (b) subvector-wise.
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4. PERFORMANCE EVALUATION 
In this section, we compared the performance of the proposed 
hybrid Huffman coding methods with that of no entropy coding, 
traditional Huffman coding, class-dependent Huffman coding, 
subvector-wise Huffman coding, and differential Huffman coding 
in a view of their average number of bits per frame. For the 
original vector quantization, the average number of bits was 
measured at 44 bits/frame since 6 subvectors for C1–C12 were 
quantized with 6 bits each and 1 subvector for C0 and log-E was 
quantized with 8 bits.

Table 4 shows the comparison of average number of bits/frame 
required for the different Huffman coding methods. As shown in 
the last row of the table, the proposed subvector-wise differential 
Huffman coding method gave an average bit reduction of 1.20, 
1.05, 0.95, 0.69, 0.11, and 0.20 bits/frame for the subvectors of 
C1–C12, compared to the average number of bits for no entropy 
coding, traditional Huffman coding, class-dependent Huffman 
coding, subvector-wise Huffman coding, differential Huffman 
coding, and class-dependent differential Huffman coding method, 
respectively. It was also shown from the table that applying 
subvector-wise differential Huffman coding method to the 
subvector of C0 and log-E provided average reductions of 2.86, 
1.98, 1.32, 1.98, 0.0, and 0.12 bits/frame, compared to the same 
respective conditions. 

Finally, Fig. 4 summarizes the average number of bits/frame 
for the different Huffman coding methods including no entropy 
coding. As a result, there were 33.93 bits/frame when the proposed 
hybrid Huffman coding method was applied, which corresponded 
to bit-rate reductions of 10.07 bits/frame, 8.29 bits/frame, 7.20 
bits/frame, 6.12 bits/frame and 0.67 bits/frame compared to no 
entropy coding, traditional Huffman coding, class-dependent 
Huffman coding, subvector-wise Huffman coding, differential 
Huffman coding, and hybrid Huffman coding according to voicing 
class, respectively. 

5. CONCLUSION 
In this paper, we proposed a hybrid Huffman coding of MFCC 
feature vectors for DSR according to voicing class or subvectors 
and differential coding as a means of further reducing the bit-rate 
of compressed MFCCs. The proposed method was based on the 
subvector-wise property of feature distribution as well as the 
redundancy reduction in time differences of features. By 
combining these properties, we designed seven differential 
Huffman tables according to the subvectors. The proposed 
subvector-wise differential Huffman coding method provided an 
average bit-rate reduction of 10.07 bits/frame compared with the 
case when no entropy coding was employed in the DSR. 
Moreover, we had a bit-rate reduction of 0.67 bits/frame compared 
to differential Huffman coding.  
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Figure 4: Performance comparison in the average number of bits
for the different Huffman coding methods. 

Table 4. Average number of bits/frame of each subvector for the 
different Huffman coding methods.  

Method C1–C12 (C0,log-E) 
No entropy coding 6 8 

Traditional Huffman coding 5.85 7.12 
Class-dependent Huffman coding 5.78 6.46 
Subvector-wise Huffman coding 5.49 7.12 

Differential Huffman coding 4.91 5.14 
Hybrid Huffman coding 

Class-dependent Huffman coding 5.00 5.26 
Subvector-wise Huffman coding 4.80 5.14 

Table 3. Average entropy comparison (bits/frame) of hybrid 
Huffman coding methods.  

Subvector Normal Differential 

Class-dependent 
differential coding 

(C1,C12)   5.78   4.95 
(C0, log-E)   6.46   5.24 

Total 40.90 34.94 

Subvector-wise 
differential coding 

(C1,C2)   5.06   4.01 
(C3,C4)   5.31   4.12 
(C5,C6)   5.61   5.02 
(C7,C8)   5.62   5.22 
(C9,C10)   5.19   4.74 
(C11,C12)   5.39   5.53 

(C0, log-E)   7.06   5.10 
Total 39.78 33.74 
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