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ABSTRACT

This paper proposes an efficient combination of state likelihood re-
cycling and batch state likelihood calculation for accelerating acous-
tic likelihood calculation in an HMM-based speech recognizer. Re-
cycling and batch calculation are each based on different technical
approaches, i.e. the former is a purely algorithmic technique while
the latter fully exploits PC architecture, and their good acceleration
performances are reported in the literatures, respectively. To acceler-
ate the recognition process further by combining them efficiently, we
introduce conditional fast processing and acoustic back-off strate-
gies. Our combination algorithm employs the conditional fast pro-
cessing strategy that is conditioned by two criteria. The first poten-
tial activity criterion is used to control not only the recycling of state
likelihoods at the current frame but also the precalculation of state
likelihoods for several succeeding frames. The second reliability cri-
terion and acoustic back-off are used to control the choice of recy-
cled or batch calculated state likelihoods when they are contradictory
in the combination and to prevent word accuracies from degrading.
Large vocabulary spontaneous speech recognition experiments us-
ing four PCs with different specifications showed that, despite the
PC specification dependence, the combined acceleration technique
further reduced the total recognition time on all of the PCs.

Index Terms— fast acoustic likelihood calculation, state likeli-
hood recycling, batch state likelihood calculation, combined accel-
eration technique, acoustic back-off

1. INTRODUCTION

It is well known that acoustic likelihood calculation is the most com-
putationally expensive process in a hidden Markov model (HMM)-
based speech recognizer. Generally speaking, in the total speech
recognition process, more than 50% of the computational time is
spent on acoustic likelihood calculation. Thus, to accelerate the
speech recognition process, acoustic likelihood computation should
be reduced. Many studies have attempted to solve this problem
[1, 2, 3,4,5,6]. And they can be roughly classified into the fol-
lowing two technical categories:

The first category consists of purely algorithmic techniques,
such as Gaussian reduction [1], Gaussian selection [2], and state
selection (or state likelihood recycling) [3]. All these techniques
are based on approximations, i.e. simplifications of detailed model
structures and/or detailed likelihood calculations. Thus, these tech-
niques trade a slight degradation in recognition accuracy for process
acceleration. However, their acceleration performances are essen-
tially independent of the PC specifications. On the other hand, the
second category consists of techniques based on PC architectures,
such as MMX [4], SSE [5], and batch state likelihood calculation
[6]. There is concern that their acceleration performances will de-
pend heavily on the PC specifications. However, since none of these
techniques use approximations, process acceleration can be obtained
without degrading recognition accuracy.

In this paper, we propose an efficient technique for accelerat-
ing acoustic likelihood calculation. The proposed technique is based
on a combination of state likelihood recycling [3] and batch state
likelihood calculation [6]. As mentioned above, they have different
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technical characteristics, and their good acceleration performances
are reported in [3] and [6], respectively. If we could combine them
efficiently, further process acceleration could be expected. However,
to the best of our knowledge, there have been no studies investigating
their combination, and it is not known how much process accelera-
tion could be obtained by using the combined technique. In this pa-
per, we introduce conditional fast processing and acoustic back-off
[7] strategies to the combined technique, and show its good accel-
eration performance through large vocabulary spontaneous speech
recognition experiments using four PCs with different specifications.

2. EXISTING ACCELERATION TECHNIQUES

We will combine the following two existing fast HMM-state likeli-
hood calculation techniques in the next section.

2.1. State Likelihood Recycling

The first existing acceleration technique is state likelihood recy-
cling [3]. Henceforth, it is referred to as recycling. Figure 1 (A) is
a state-frame likelihood table that shows the recycling procedure.
Recycling assumes that monophones are approximated models of
context-dependent (CD) phoneme-HMMs and, before decoding, all
CD HMM states are linked to the monophone states on the condition
that they are in the same phoneme cluster and in the same state
position.

During the frame by frame decoding, we calculate the likeli-
hoods of all the monophone states before calculating the likelihoods
of the active CD HMM states. The computational costs of these
precalculations are not so high because the number of monophone
states is very small compared with the number of the CD HMM
states. Then, the likelihood of the corresponding monophone state
is referred in the likelihood calculation of each active CD HMM
state. If it is Higher than the recycling threshold 1 (“circle+H”),
the CD HMM state likelihood is calculated Normally (“circle+N”).
Conversely, if the monophone state likelihood is Lower than the re-
cycling threshold 1 (“circle+L”), it is Recycled as the approximated
likelihood of the CD HMM state (“circle+R”).

The recycling threshold 1 is given by multiplying the maximum
monophone state likelihood by recycling coefficient o (—co < v <
1.0) at each frame. As o becomes larger, the frequency of the like-
lihood recycling increases, thus the acoustic likelihood calculation
could be accelerated but with a risk of degraded recognition accu-
racy. As a becomes smaller, the opposite effects could be obtained.
Since recycling is a purely algorithmic technique, its acceleration
performance is essentially independent of PC specifications.

2.2. Batch State Likelihood Calculation

The second existing acceleration technique is batch state likelihood
calculation [6]. Henceforth, it is referred to as batch calculation. 1t
is based on the following two experimental analyses: (i) Profiling
shows that, in state likelihood calculation, much of the time is spent
not on floating-point operations, but in fetching the state parameters
(i.e. the mean vectors, covariance matrices and weighting factors of
each Gaussian pdf in the state) from the main memory to the cache.
(i) If a state is activated at a frame, it tends to be activated for several
succeeding frames.
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Fig. 1. Procedures of the three acceleration techniques in state-frame likelihood tables (SL: state likelihood).

The batch calculation procedure, which exploits the above two
characteristics, is shown in Fig. 1 (B). If a CD HMM state is ac-
tivated at a frame ¢, the state likelihoods are calculated and stored
in the state-frame likelihood table not only for the current frame ¢
(“circle+N”) but also for succeeding [ frames (“circletrectangle”.
In Fig. 1 (B), 3 is set at 3). Then, for these look-ahead frames,
t+1,--- ,t+ [, if the state likelihoods are required, they are looked
up in the table (convert “circle+rectangle” to “circletrectangle+B”).

In batch calculation, the number of time-consuming state pa-
rameter fetching processes described in (i) is reduced, thus, we can
expect the acoustic likelihood calculation to be accelerated. If the
batch calculated state likelihoods (“circlet+rectangle”) are not used,
they become redundant calculations. However, (ii) indicates that
there are not so many of these redundant calculations. There is con-
cern that the acceleration performance will depend heavily on the PC
specifications. But, there is no degradation in recognition accuracy
because there is no approximation in batch calculation.

3. COMBINED ACCELERATION TECHNIQUE

As described above, recycling and batch calculation have different
technical characteristics, and their good acceleration performances
are reported in [3] and [6], respectively. To further accelerate the
recognition process by combining them efficiently, we introduce
conditional fast processing and acoustic back-off [7] strategies.

Figure 2 shows our combination algorithm. We refer to it as the
conditional fast processing strategy which is based on two criteria,
namely potential activity and reliability criteria (thresholds or coef-
ficients in the implementation). As with recycling, monophone state
likelihoods are rated high or low by using a recycling threshold 1
based on a recycling coefficient «. And there are two possibilities
for the corresponding CD HMM state likelihoods, one is not calcu-
lated and the other is batch calculated. Therefore, the combination
basically consists of four cases, (1)—(4).

In case (1), as with recycling, we calculate the CD HMM state
likelihoods normally. At the same time, as with batch calculation, we
calculate the CD HMM state likelihoods for succeeding 3 frames.
In case (2), as with recycling, we recycle the monophone state like-
lihoods as the approximated likelihoods of the corresponding CD
HMM states. In case (3), as with batch calculation, we look up the
batch calculated CD HMM state likelihoods in the state-frame like-
lihood table.

The function of recycling threshold 1 based on recycling coef-
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ficient « is strengthened with this combination algorithm. In re-
cycling, as described in Section 2.1, it controls whether we calcu-
late the CD HMM state likelihoods normally or approximate them
by corresponding monophone state likelihoods only at the current
frame. However, in the combined technique, as described in case
(1), it also controls whether we calculate the CD HMM state likeli-
hoods for succeeding 3 frames in advance with the estimation that
these states would be activated in the future frames. Thus, in the
combined technique, threshold 1 based on coefficient « is not just a
recycling threshold, and we refer to it as a potential activity thresh-
old.

In case (4), we must choose either of the two techniques’ state
likelihood calculation results. In this case, monophone state likeli-
hoods are rated low. Thus, recycling estimates that the correspond-
ing CD HMM state likelihoods are not worth calculating and could
be approximated. On the other hand, several frame ago, based on
the continuity of the state activation, batch calculation estimated that
the CD HMM state likelihoods would be worth calculating and cal-
culated them in advance. That is, in this case, the state likelihood
calculation results of recycling and batch calculation are contradic-
tory.

The straightforward choice in case (4) would be to look up the
batch calculated CD HMM state likelihoods in the state-frame like-
lihood table as with case (3). This is because, in general, CD HMM
state likelihoods are more precise than those of the corresponding
monophone states. However, in this work, we adopt a more efficient
method for preventing word accuracy degradation. It is based on the
reliabilities of the state likelihoods and includes the straightforward
choice as its special case. This reliability is a sort of frame level
confidence measure and is estimated frame by frame. Our method
divides case (4) into two cases with a reliability threshold. If the CD
HMM state likelihoods are regarded as reliable (case (4X)), we look
up them in the state-frame likelihood table as with case (3). On the
other hand, if the CD HMM state likelihoods are regarded as unre-
liable (case (4Y)), we use some other reliable value in place of the
unreliable CD HMM state likelihoods.

As more training data are assigned to the states (i.e. the larger
the occupancy counts of the states are), the parameter estimations
that can be performed for the Gaussian pdfs in the states become
more robust, and the likelihoods obtained from these states become
more reliable. If an acoustic model stores the occupancy count of
each state, the counts can be used to estimate the reliabilities of the
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Fig. 2. Our combination algorithm, i.e. the conditional fast processing strategy (SL: state likelihood).

state likelihoods. Unfortunately, they are usually removed from the
acoustic model. Therefore, instead of estimating the reliabilities of
the CD HMM state likelihoods directly, we adopt another estimation
method that uses corresponding monophone state likelihoods. This
approach is based on the following consideration:

A monophone state is a representative version of the correspond-
ing CD HMM states. Conversely, a CD HMM state is a detailed ver-
sion of the corresponding monophone state. There should be a cer-
tain degree of correlation between monophone state likelihoods and
the corresponding CD HMM state likelihoods. A monophone state
is trained to cover all the data of a part (i.e. beginning, middle or
ending part) of a phoneme segment. Since the occupancy counts of
the monophone states are large, the parameters of the Gaussian pdfs
in the monophone states are robustly estimated, and the reliabilities
of the state likelihoods obtained from the monophone states are ex-
pected to be high. The training data of a monophone state are divided
into parts according to the preceding and succeeding phoneme de-
pendencies determined by the tree-based state clustering result. And
each of the corresponding CD HMM states is individually trained
using a part of the divided data. It is difficult to obtain a robust esti-
mate of the Gaussian pdf parameters of a CD HMM state that covers
the low likelihood region of the corresponding monophone state. In
this small occupancy count region, Gaussian pdfs in the CD HMM
state are over-tuned to the training data as shown in Fig. 3. Conse-
quently, their covariances tend to be small. That is, if the monophone
state likelihood is very low for an input feature vector, the state like-
lihoods of the corresponding CD HMM states for the input feature
vector are unreliable. In some cases, even if the monophone state
likelihood is very low for an input feature vector, the state likeli-
hoods of the corresponding CD HMM states for the feature vector
might be extremely high because of small covariances.

Based on the above consideration, we divide case (4) into two
cases, (4X’) and (4Y’), by introducing a new coefficient, i.e. the
reliability coefficient , in addition to the potential activity coeffi-
cient @ (—oo < v < a < 1.0). ~y gives threshold 2 that divides
monophone state likelihoods into low or very low ranks (threshold
1 > threshold 2). With (4X’), the monophone state likelihoods are
rated low. Here, as with the straightforward choice, we look up the
CD HMM state likelihoods in the state-frame likelihood table. With
(4Y’), the monophone state likelihoods are rated very low. Thus, in
this case, we estimate that the corresponding batch calculated CD
HMM state likelihoods are unreliable and, as with recycling, we re-
cycle the more reliable monophone state likelihoods as the approxi-
mated likelihoods of the CD HMM states. Recycling in case (4Y’)

Low likelihood

(small occupancy count)
region /\
—— I

Gaussian mixture pdf
in a monophone state

X

Gaussian pdfs Gaussian mixture pdf in a
are over-tuned CD HMM state that covers
to the training :> -the low likelihood region

of the corresponding
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Fig. 3. Example of unreliable CD HMM state.
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is a sort of acoustic back-off [7], i.e. we postpone the detailed lo-
cal frame scoring of the active hypotheses by giving them certain
low but reliable state likelihoods. If =y is set at —oo, case (4Y”) (i.e.
acoustic back-offt) disappears, and our method becomes equivalent
to the straightforward method. If v is set equal at «, case (4X’)
disappears, and in case (4) (i.e. (4Y”)), CD HMM state likelihoods
are approximated by the corresponding monophone state likelihoods
according to the acoustic back-off strategy.

Figure 1 (C) shows the procedure of our combined accelera-
tion technique. It should be noted that, in the combined technique,
the monophone state likelihood calculations are also accelerated by
batch calculation.

4. SPEECH RECOGNITION EXPERIMENTS

We evaluated the above three acceleration techniques in large vocab-
ulary spontaneous speech recognition experiments.

4.1. Experimental Setup

An HMM-based female acoustic model was trained using 100 hours
of speech data consisting of 120k spontaneous utterances by 55 fe-
male speakers. It had 2,000 states (consisting of 90 monophone
states and 1,910 CD HMM states) and each state had 16-mixture
Gaussian pdfs with diagonal covariance parameters. A 30k vocab-
ulary size word trigram language model was trained using human
transcribed text consisting of 1.1M word of spontaneous speech.
The baseline speech recognizer was VoiceRex [8] which employed
a standard Viterbi beam search with a two-pass decoding strategy.
The three acceleration techniques described in Sections 2 and 3 were
implemented on VoiceRex. The evaluation speech data consisted of
714 spontaneous utterances by 17 female speakers (42 utterances per
speaker), who were different from the 55 female speakers who pro-
vided the acoustic model training data. The test set perplexity was
108 and the OOV rate was 0.8%.

As described in Section 2.2, there is concern that the accelera-
tion performance of batch calculation (and also the combined tech-
nique) depends on the PC specifications. Thus, we conducted the
experiments using four PCs with the different specifications shown
in Table 1. Two were based on current standard Pentium CPUs and
the other two were based on state-of-the-art Core 2 CPUs. All the
PCs had Red Hat Linux 9 operating systems. In the following, we
identify the PCs by their CPU types.

4.2. Experimental Results

Left hand side of Fig. 4 shows the real time factor (RTF) reduction
rates of the three acceleration techniques from the baseline speech
recognizer on each PC. In this figure, the RTFs were measured on
the basis of the total recognition time (not only the acoustic likeli-
hood calculation time). At each point, the RTFs were measured five
times and averaged to reduce measuring errors. The baseline speech
recognizer did not employ an acceleration technique, and its word
accuracy was 75.61%.

Table 1. Specifications of the four PCs.

CPU type Clock freq. | Cache size | Memory size
Pentium 4 3.6GHz IMB 2GB
Pentium Xeon 3.6GHz 2MB 4GB
Core 2 Duo 2.4GHz 4MB 4GB
Core 2 Quad 2.4GHz 8MB 8GB
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Fig. 4. (Left) RTF reduction rates of the three acceleration techniques on each PC. (Right) Normalized RTFs vs. word accuracies of the three

acceleration techniques on Pentium Xeon.

With recycling, on condition that a word accuracy degradation
of up to 0.5% from the baseline was allowed, the recycling coef-
ficient  was increased from 0.600 in 0.025 steps, and was finally
fixed at 0.725. With recycling, the RTF reduction rates for Pentium
Xeon, Core 2 Duo and Quad are almost the same, while that for Pen-
tium 4 is about 2% lower than those of the other three PCs. Thus,
contrary to the expectation described in Section 2.1, it is revealed
that the acceleration performance of recycling also depends on the
PC specifications. However, the dependence is not so strong.

With batch calculation, the number of look-ahead frames (3 was
fixed at 7 according to our preliminary experiments and [6]. In con-
trast to recycling, with batch calculation, it is confirmed that the RTF
reduction rates depend heavily on the PC specifications as mentioned
in Section 2.2. The RTF reduction rates for Core 2 Duo and Quad
are about 9% lower than that for Pentium Xeon. We guess that this is
because the costs of the fetching processes have been reduced by the
use of several new technologies (e.g. Intel Smart Memory Access
and Intel Advanced Smart Cache) in recent Core 2 CPUs [9].

With the combined technique, 0 was fixed at 7 as with batch cal-
culation, and the two coefficients, the potential activity coefficient v
and the reliability coefficient v, were adjusted as follows: First, ¥
was fixed at —oo. This meant that, the straightforward choice was
fully performed in case (4) in Fig. 2. Then, o was adjusted with the
same procedure employed with recycling as described above, and
was finally fixed at 0.825. Next, v was varied from 0.100 to 0.825 in
0.025 steps. If v was set at 0.825 (i.e. equal to ), acoustic back-off
was fully performed in case (4) in Fig. 2. We can confirm that word
accuracy is steadily improved by adjusting ~, i.e. acoustic back-off
prevents the word accuracy from degrading. The best  is 0.400,
and the degradation in word accuracy is only 0.07% from that of the
baseline. With all the PCs, the combined technique further acceler-
ates the speech recognition processes, and the RTF reduction rates
range from 28% to 36%. The RTF reduction rates of Core 2 Duo
and Quad are about 8% lower than that of Pentium Xeon. As de-
scribed above, these performance degradations are caused by the PC
specification dependence of batch calculation.

Right hand side of Fig. 4 shows the relations between the RTFs
and word accuracies of the three acceleration techniques on Pentium
Xeon (the RTFs were measured five times and averaged as before,
and then normalized by the one of the baseline recognizer). In the
experiments on which these figures are based, 3 for the batch cal-
culation and combined technique was fixed at 7 as before, and  for
the combined technique was fixed at 0.400 (the best value). Then, o
for recycling and the combined technique was varied from 0.600 to
0.950 in 0.025 steps. From this figure, we can again clearly confirm
the good acceleration performance of the combined technique.

5. CONCLUSION AND FUTURE WORK

We proposed an efficient combination of state likelihood recycling
and batch state likelihood calculation for accelerating acoustic like-
lihood calculation in an HMM-based speech recognizer. We intro-
duced conditional fast processing and acoustic back-off strategies to
our combined technique. And it realized a reduction of up to 36% in
total recognition time from the baseline in large vocabulary sponta-
neous speech recognition experiments using four PCs with different
specifications.

We believe that our combined technique will be further im-
proved by implementing the following ideas: First, we could en-
hance the combination algorithm shown in Fig. 2 by making it
work based on state likelihoods not only at the current frame but
also for sevral preceding frames. For example, we could rate the
monophone state likelihoods averaged for last x(>2) frames. Sec-
ond, we could make our combination algorithm more flexible by
adding other criteria. For example, we could divide case (1) in Fig.
2 into two cases (1) and (1”) by introducing a third threshold, and in
case (17), we calculate CD HMM state likelihoods normally with-
out batch calculating them for succeeding frames. Third, although
acoustic back-off steadily prevented word accuracies from degrad-
ing, its effect will be increased by estimating the reliabilities of state
likelihoods directly, as described in Section 3. Finally, of course,
our technique will be further accelerated by combining it with other
acceleration techniques.
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