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ABSTRACT

This paper proposes a technique for emotional speech recognition
which enables us to extract paralinguistic information as well as
linguistic information contained in speech signal. The technique
is based on style estimation and style adaptation using multiple-
regression HMM. Recognition process consists of two stages. In
the first stage, a style vector that represents the emotional expres-
sion category and intensity of its variation of input speech is esti-
mated on a sentence-by-sentence basis. Then the acoustic models are
adapted using the estimated style vector and standard HMM-based
speech recognition is performed in the second stage. We assess the
performance of the proposed technique on the recognition of acted
emotional speech uttered by both professional narrators and non-
professional speakers and show the effectiveness of the technique.

Index Terms— style estimation, multiple-regression HMM
(MRHMM), style adaptation, speaker adaptation

1. INTRODUCTION

Speech signal conveys not only linguistic information but also par-
alinguistic information such as emotions and speaking styles. Al-
though sate-of-the-art speech recognition systems can achieve a high
performance in recognition of neutral style speech, they do not al-
ways maintain the same recognition performance for emotional or
spontaneous speech. This is because acoustic and prosodic features
of speech are affected by emotions and speaking styles as well as
speaker characteristics and linguistic factors [1], and such variations
cause mismatch between the neutral style model and input speech.
A simple approach to alleviating this problem is to prepare matched
models depending on respective variations. This might be possi-
ble when variations in emotions and speaking styles are limited and
expected. However, in reality the degree or intensity of emotional
expressions and/or speaking styles would change widely and thus it
would be unrealistic to train a large number of matched models that
covers all possible variations.

One of realistic approaches to the problem is to use model adap-
tation. Since the variations in emotional expressions or speaking
styles appear in every utterance or even in a phrase, it is desirable to
perform the model adaptation on-line. This implies that the model
adaptation should be carried out using only a quite small amount
of data, more specifically, one sentence or one phrase speech. For
this purpose, we have proposed a rapid model adaptation technique
based on a low-dimensional control parameter space for emotional
speech recognition [2]. The technique utilizes a multiple-regression
HMM (MRHMM) framework [3] and takes a similar approach to
eigenvoice [4]. We showed that the technique gave the recognition

performance comparable with that of using the matched models.
However the technique has a problem that a considerable amount
of speech data of the target speaker is required in advance to train
the MRHMM. This leads to difficulty in recognition of arbitrary
speaker’s emotional speech. Although a possible approach to this
problem is to use a speaker-independent MRHMM, the performance
would be unsatisfactory because the emotional or style expressive-
ness varies sensitively on individual characteristics.

In this paper, we propose a technique that enables us to eas-
ily obtain an arbitrary speaker’s model and to adapt the model on-
line. The on-line adaptation process of the proposed technique is
the same as the MRHMM-based rapid model adaptation [2]. How-
ever, for the MRHMM training, we use a speaker-independent (SI)
neutral style model which can be obtained much easier than speaker-
dependent style models. The SI model is adapted to target speaker’s
style-dependent models based on simultaneous adaptation of speaker
and style with a small amount of speech data uttered by the tar-
get speaker. Then, the MRHMM of the target speaker is trained
from the obtained style-dependent models. In the recognition stage,
we first estimate the value of style vector for every sentence of the
input speech based on a style estimation technique [5]. Then we
adapt the model by calculating new mean vectors of the probability
density functions and perform standard HMM-based speech recog-
nition. An advantage of the proposed technique is that we can obtain
paralinguistic information, that is, the category of emotions and its
intensity-related value of the input speech as well as linguistic infor-
mation after the recognition process.

2. MRHMM-BASED SPEECH RECOGNITION

2.1. Acoustic modeling using MRHMM

In the MRHMM-based emotional speech recognition framework [2],
the acoustic model is represented by MRHMM, i.e., HMM having
Gaussian probability density functions (pdfs) in which the mean vec-
tors of each pdf is expressed by a function of a low dimensional
vector, called the style vector. Each component of the style vector
corresponds to a quantity or intensity that represents how much the
acoustic features are affected by a certain emotional expression or
speaking style.

Let μi be the mean vector of the Gaussian pdf of MRHMM at
state i. The mean vector is expressed as

μi = h
(i)
0 + Aiv = Hiξ (1)

where Hi =[h
(i)
0 , · · · , h

(i)
L ], Ai =[h

(i)
1 , · · · , h

(i)
L ], ξ=[1, v�]�,

and v = [v1, · · · , vL]� is the style vector. For given training data
and corresponding style vectors, the parameters of MRHMM, i.e.,
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the regression matrix Hi and the covariance matrix Σi of the output
pdf can be estimated in ML sense [6].

2.2. On-line model adaptation based on style estimation

Once an MRHMM has been trained, we can estimate the optimal
style vector in ML sense for a given input speech sample using the
trained MRHMM. Then, substituting the estimated style vector into
(1), we can calculate the new mean vector of the model which is
adapted to the input speech style, i.e., a certain emotional expression
and/or speaking style [2].

Let λ be the MRHMM and let O = (o1, · · · , oT ) be the in-
put observation sequence. Then we estimate the style vector v for
O given MRHMM λ. The optimal style vector v in ML sense is
defined as

v = arg max
v

P (O|λ, v). (2)

An EM algorithm-based re-estimation formula of the style vector is
given by

v =

(
N∑

i=1

T∑
t=1

γt(i)A
�
i Σ−1

i Ai

)−1

(
N∑

i=1

T∑
t=1

γt(i)A
�
i Σ−1

i (ot−h
(i)
0 )

)
(3)

where N is the number of states, and γt(i) is the probability of being
in state i at time t [5].

2.3. MRHMM training using SI model and model adaptation

The MRHMM training generally requires a considerable amount of
speech data, more specifically, several tens minutes speech data of
respective styles uttered by the target speaker. However it is unreal-
istic to prepare sufficient data for arbitrary speakers. In the style con-
trol and style estimation based on multiple-regression hidden semi-
Markov models (MRHSMMs), we have shown that the use of aver-
age voice model and simultaneous adaptation of speaker and style is
promising to overcome this problem [7, 8]. Thus we incorporate a
similar approach into the MRHMM-based emotional speech recog-
nition.

We first train a speaker-independent (SI) model with a suffi-
cient amount of multiple speakers’ neutral speech data. Next we
adapt the SI model to target speaker’s respective styles using a model
adaptation technique with a small amount of speech data uttered by
the target speaker in advance. Then we obtain the target speaker’s
MRHMM based on a least squares estimation from the speaker- and
style-adapted HMMs.

Suppose that adaptation data contains speech uttered in S dif-
ferent styles. Let the mean vector of the pdf for style s and corre-
sponding style vector be given by μ

(s)
i and v

(s)
i , respectively, for

1 ≤ s ≤ S. We choose Hi that minimizes

E =

S∑
s=1

∥∥∥μ(s)
i − Hiξ

(s)
∥∥∥2

(4)

as the regression matrices of the MRHMM [7, 8]. Differentiating E
with respect to Hi and equating the result to zero, we have

Hi =

(
S∑

s=1

μ
(s)
i ξ(s)�

)(
S∑

s=1

ξ(s)ξ(s)�
)−1

. (5)

To alleviate a problem due to the fact that the amount of speech
data for the simultaneous adaptation of speaker and style uttered by

the target speaker in advance is assumed to be small, we refine the
MRHMM parameter Hi as follows [8]:

Hi =
τ Hi + Γi HML

i

τ + Γi
(6)

where Hi is the regression matrix obtained by (5) and HML
i is the

regression matrix estimated from the adaptation data in ML sense.
In addition, τ is a positive parameter for controlling the modification
weight and

Γi =
∑

t

γt(i). (7)

It is noted that the regression matrix Hi approaches to HML
i when

enough adaptation data is available at state i,

2.4. MRHMM-based emotional speech recognition

For the given MRHMM, speech recognition process can be done
straightforwardly. First, the style vector for the input speech is es-
timated on a sentence-by-sentence basis. Then, using the estimated
style vector, an adapted HMM for recognition is obtained from the
MRHMM. After that, the process is the same as the standard HMM-
based speech recognition. When performing the style estimation, we
need phone transcription of input speech [2, 5]. For this purpose, we
use a two-pass recognition process. Overall recognition process is
summarized in the following.

SI model training:

Step 0 Train SI model using multiple speakers’ neutral style speech
data.

MRHMM training:

Step 1 Convert the SI model to the target speaker’s style models
using a model adaptation technique.

Step 2 Construct the target speaker’s MRHMM using (5).
Step 3 Refine the obtained MRHMM using (6).

MRHMM-based recognition:

Step 4 Obtain neutral style HMM by setting the style vector equal
to 0 in the trainded MRHMM.

Step 5 Perform phoneme recognition of input speech using the neu-
tral style HMM.

Step 6 Estimate the style vector v for the input speech using the
phoneme sequence obtained in Step 5.

Step 7 Obtain adapted HMM from the trained MRHMM by calcu-
lating the new mean vectors with the estimated style vector
v.

Step 8 Perform speech recognition using the adapted HMM and ob-
tain the final recognition result.

3. EXPERIMENTS

3.1. Experimental conditions

In the following experiments, we used professional narrators’ and
non-professional speakers’ speech. Professional narrators’ speech
database is the identical one that used in the previous study [2]. It
contains three styles of speech samples with simulated emotions —
neutral, sad, and joyful styles, in which phonetically balanced 503
sentences taken from the ATR Japanese speech database were ut-
tered by two males and one female, MMI, MJI, and FTY, respec-
tively, in each style. Non-professional speakers’ speech data con-
sists of four styles of speech samples — neutral, sad, joyful, and
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Fig. 1. Style spaces for MRHMM.

angry styles, uttered with simulated emotions by eight male and one
female graduate students. Each style contains a subset of 100 sen-
tences chosen from the ATR 503 phonetically balanced sentence set.
The non-professional speakers have little experience of uttering the
given sentence with such simulated styles. All speech samples were
recorded in a quiet room, and speakers were directed to keep the
degree of expressiveness of each style almost constant.

Speech signals were sampled at a rate of 16kHz and windowed
by a 25 ms Hamming window with a 10 ms frame shift. The fea-
ture vectors consisted of 12 MFCCs, log energy, and their first-
order deltas. We used 42 phonemes including silence and pause.
Phonemes were modeled by 3-state single-mixture left-to-right tri-
phone HMMs. Parameter tying of the triphone HMMs were done
using decision-tree-based clustering. The same decision tree struc-
ture was used in all the models except for SD-MRHMM which will
be described in 3.2.

The speaker-independent (SI) model was trained from six male
and four female speakers’ neutral style speech data included in the
ATR Japanese speech database (Set B). These ten speakers were dif-
ferent from the professional narrators and non-professional speakers
mentioned above. Speech data used for the SI model training were
450 sentences for each speaker, 4500 sentences in total.

In the speaker and style adaptation, five sentences (around 20
seconds) for each style were used for each target speaker. To alle-
viate the dependency of the choice of the adaptation data, the adap-
tation sentences were chosen randomly and the experiments were
conducted twice by changing the adaptation data. As the model
adaptation technique, we applied a combined approach based on the
maximum likelihood linear regression (MLLR) and maximum a pos-
teriori (MAP) adaptation [9]. Since the amount of adaptation data of
a target style was small, we used a global transform in the MLLR.
We set τ = 60 on the basis of preliminary experimental result.

3.2. Performance with speaker and style adaptation

We first evaluated the performance of speaker and style adaptation
by comparing the proposed speaker- and style-adapted MRHMM
(SA-MRHMM) with the SI neutral style model (SI-HMM) and
speaker-dependent MRHMM (SD-MRHMM). In this experiment,
we used three styles of the professional narrators’ speech data. A

Table 1. Comparison of phoneme error rates (%) for SI-HMM, SD-
MRHMM, and SA-MRHMM.

Input Model
Style SI-HMM SD-MRHMM SA-MRHMM

Neutral 20.24 5.91 10.62
Sad 27.95 7.07 14.13

Joyful 23.92 7.60 14.99
Overall 24.03 6.87 13.25

Table 2. Phoneme error rates (%) for non-professional speakers’
emotional speech.

SI-HMM 2-D 3-D
Neutral 22.69 15.78 15.55

Sad 29.17 19.14 19.19
Joyful 25.14 18.51 18.63
Angry 30.32 21.92 21.96
Overall 26.83 18.84 18.83

one-dimensional style space (Fig. 1(a)) was used. SD-MRHMM
was trained using 450 sentences for each style, 1350 sentences in to-
tal, for each target speaker. In the SA-MRHMM training, the initial
model was the SI-HMM and adapted to the target speaker’s respec-
tive style models using five sentences for each style. We performed
a 10-fold cross-validation test. It is noted that these experimental
conditions are the same as the SD-MRHMM case described in [2].

Table 1 shows the average scores of the three speakers’ phoneme
recognition error rates. The error rate was calculated based on the
number of correctly recognized phonemes, substitutions, and dele-
tions. “Overall” represents the average score of all the styles.
Although the error rates for SA-MRHMM are larger than SD-
MRHMM, it is obvious that they are significantly smaller than
SI-HMM. Moreover it should be emphasized that the number of
target speaker’s utterances used for the model training was only five
sentences of each style for SA-MRHMM, whereas 450 sentences
for SD-MRHMM. In addition, as is the case with SD-MRHMM [2],
we have found that the phoneme recognition errors in the first pass
(Step 5) do not affect the final recognition result significantly.

3.3. Performance evaluation with non-professional speakers

We next assessed the performance of the proposed technique using
non-professional speaker’s speech which leads to a more realistic
situation than the professional narrators’ speech. We used four
styles of non-professional speakers’ speech with simulated emo-
tion. Two different style spaces, namely two-dimensional space
(Fig. 1(b)) and three-dimensional ones (Fig. 1(c)) were used for
modeling MRHMMs. In this experiment, we performed a two-fold
cross-validation test using 50 test sentences that were not included
in the adaptation data.

Table 2 shows the average scores of the nine speakers’ phoneme
recognition error rates of respective styles. In the table, the entries
for “2-D” and “3-D” represent the results for the SA-MRHMM with
the two-dimensional and three-dimensional style spaces, respec-
tively. It is seen that the error rates decreased significantly in both
cases of SA-MRHMM compared with the SI neutral style model.
The results for 2-D and 3-D style spaces are comparable in scores.

Figure 2 shows the distributions of the estimated values of the
style vector for the whole test speech samples of one female and two
male speakers who are arbitrarily chosen from nine speakers. We
can see that the distribution of the estimated style vectors belonging
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Fig. 2. Distributions of estimated values of the style vector for non-
professional speakers’ test samples.

to the same style differs from those to other styles. This result seems
to be promising despite of using no prosodic features and giving
no guarantee that the style space is orthogonal. In other words, we
would obtain certain paralinguistic information as well as the speech
recognition result. In fact, the average correct style classification
rates of nine speakers based on the Euclidean distance in the 3-D
style space were 99.1, 97.6, 65.3, and 86.2% for neutral, sad, joyful,
and angry styles, respectively.

3.4. Performance comparison with multi-mixture HMMs

We further compared the performance of MRHMM with ordinary
HMMs. The evaluation test was the same as described in 3.3, and
the style space for the MRHMM (SA-MRHMM) was the 3-D one.
We used speaker- and style-adapted HMMs (SA-HMMs) obtained
in Step 1 using target speaker’s five sentences of each style as the
baseline. We also trained the following style-independent HMMs.
Style-independent single-mixture HMM (1-M HMM) is a model
adapted from the SI-HMM using the target speaker’s five sentences
for each style, 20 sentences in total. In contrast, style-independent
four-mixture HMM (4-M HMM) is a combined model obtained by
collecting Gaussian components of four SA-HMMs. The mixture
weights were given uniformly. Both of the style-independent HMMs
were refined by the MAP adaptation using the target speaker’s adap-
tation data. It is noted that we assumed that the style of the input
speech was known when using SA-HMMs, and unknown for other
models.

The result is shown in Table 3. The performance of the standard
HMMs was improved and comparable with that of the SA-MRHMM

Table 3. Comparison of phoneme error rates (%) of respective mod-
els for non-professional speakers’ emotional speech,

SA-HMM 1-M HMM 4-M HMM SA-MRHMM
Neutral 16.11 16.09 15.98 15.55

Sad 20.14 20.58 19.60 19.19
Joyful 19.34 19.75 18.48 18.63
Angry 23.30 23.41 22.41 21.96
Overall 19.72 19.96 19.12 18.83

as the number of mixtures of the HMM was increased. However, the
number of parameters of SA-MRHMM is smaller than 4-M HMM.
Moreover, it is again emphasized that we can obtain the paralinguis-
tic information in addition to the linguistic information.

4. CONCLUSIONS

In this paper, we have presented a technique for emotional speech
recognition which can obtain paralinguistic information as well
as linguistic information. The technique utilizes the multiple-
regression HMM (MRHMM) framework and is based on style
estimation and adaptation. Using a speaker-independent neutral
style model, MRHMM is trained with a small amount of target
speaker’s data. Furthermore, the acoustic model for speech recogni-
tion is adapted to input speech style from the trained MRHMM. We
have shown that the performance of proposed technique for both the
style estimation and speech recognition is promising. In our future
work, we will explore effectiveness of the proposed technique using
more realistic speech data, such as spontaneous speech.
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