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ABSTRACT

Compressive sensing (CS) has been proposed for signals with spar-
sity in a linear transform domain. We explore a signal dependent
unknown linear transform, namely the impulse response matrix op-
erating on a sparse excitation, as in the linear model of speech pro-
duction, for recovering compressive sensed speech. Since the lin-
ear transform is signal dependent and unknown, unlike the standard
CS formulation, a codebook of transfer functions is proposed in a
matching pursuit (MP) framework for CS recovery. It is found that
MP is efficient and effective to recover CS encoded speech as well
as jointly estimate the linear model. Moderate number of CS mea-
surements and low order sparsity estimate will result in MP converge
to the same linear transform as direct VQ of the LP vector derived
from the original signal. There is also high positive correlation be-
tween signal domain approximation and CS measurement domain
approximation for a large variety of speech spectra.

Index Terms— sampling, compressed sensing, matching pur-
suit, sparse signal reconstruction

1. INTRODUCTION

Compressive sensing is a new paradigm of acquiring signals, funda-
mentally different from uniform rate digitization followed by com-
pression, often used for transmission or storage [1, 2, 3]. The tradi-
tional approach of sampling a signal at the Nyquist rate (twice the
bandwidth) and then removing redundant information before effi-
cient transmission or storage, requires usually a lot of signal pro-
cessing at the transmitter (encoder), although the receiver (decoder)
is relatively simple. Of course, in full-duplex (two-way) communi-
cation, there is need for an encoder and decoder at each user termi-
nal and hence, the complexity difference may appear unimportant.
In several new wireless applications such as wireless sensors and
hands free communication, it is important that the signal acquisition
be as efficient as possible in terms of power consumption and hence
the computational complexity. This is similar to the requirement in
sensor networks used in remote sensing.

Compressive sensing (or compressed sampling) provides for
both sampling as well as compression, along with encryption of
the source information, simultaneously. Also, signal reconstruction
quality can be traded with the available complexity at the wireless
receiver node. All these four advantages are very important for a
communication application and we would like to explore the use of
CS for communicating speech and audio signals.

The theory of compressive sensing provides for signal recon-
struction from random projections of a signal vector, provided the
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signal is known to be sparse in a vector space. To quote [3], “CS the-
ory asserts that one can recover certain signals and images from far
fewer samples or measurements than traditional methods use,” such
as Nyquist sampling. Many practical signals do satisfy the sparse
property in some linear transform domain of the signal, such as the
wavelet domain for images. The CS theory assertion that the number
of measurements required is proportional to the sparse factor and has
nothing to do with the Fourier bandwidth of the signal is very signif-
icant. The sparse property is a measure of signal redundancy (such
as in DCT domain truncation) and CS permits to exploit this redun-
dancy right at the signal acquisition stage, instead of a subsequent
stage of compression.

Application of CS to speech and audio is not straight forward,
since the signals constitute a very large class of production mecha-
nisms, emphasizing different characteristics of the signal at different
times. The domain in which their sparsity can be exploited is also not
clear and their degree of sparsity. The perceptual properties of the
reconstructed signal and the computational constraints also become
important for a practical application, since the basic CS formulation
is very computation intensive. In this paper, we show that recovery
is possible from sub-Nyquist rate CS of speech and joint estimation
of sparse excitation and the linear system, using the matching pursuit
(MP) based iterative estimation.

2. COMPRESSIVE SENSING FORMULATION

Let x ∈ RN be the signal and letΨ = {ψ1, ψ2, ...ψN} be the basis
vectors spanningRN . The signal is said to be “T-sparse” if

x =

TX
i=1

sni
ψni

, {n1, n2, ...nT } ⊂ {1, ..., N} (1)

where sni
are scalar coefficients and T << N . We can say that

Ψ is our knowledge about x that provides the key to compressive
sensing. Hence, x = Ψ · s where s is the sparse vector with only T

non-zero elements, indexed by ni that are unknown. According to
CS theory, we can do sampling of x through projections onto random
bases and reconstruct the signal at a receiver with full knowledge of
the random bases; i.e., the sampling (sensing) measurements are:

ym =

NX
i=1

φm(i) · x(i), 1 ≤ m ≤ M < N (2)

or y = Φ · x, where Φ is a M × N measurement matrix. The
Φ is made up of orthonormal random basis vectors φm. Under the
condition that Φ and Ψ are “incoherent” it has been proved that x
can be reconstructed from y with high probability ifM > T log(N)
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[3]. The reconstruction method proposed in [3] is through convex
optimization:

ŝ =argmin
s

‖s‖1, subject to y = Φ · Ψ · s

and x̂ =Ψ · ŝ,
(3)

where ‖.‖1 is the �1 norm. The measurements being projections
onto random vectors, they are inherently encrypted and the num-
ber of measurements is related to the sparsity of the signal, hence
compressed. The computation at the sensor is minimal whereas re-
construction at the receiver is iterative, which can also provide for
graded reconstruction depending on the complexity of the receiver.
The CS formulation is also referred to as “basis pursuit” (BP) since
a subset of the column vectors of Φ · Ψ is being determined. One
of the efficient algorithms to solve CS by interpreting it as a sparse
approximation is using “orthogonal matching pursuit” (OMP) [4],
which can be formulated as:

ŝ = argmin
s

‖y − Φ · Ψ · s‖2, and ‖s‖
0

= T. (4)

The CS problem can also be interpreted as one of sparse sig-
nal approximation, since the measurement vector y is likely to have
noise in most practical cases. Hence, CS reconstruction has been
posed as one of several optimization problems: [6]

ŝ =argmin
s

‖s‖1, subject to ‖y − Φ · Ψ · s‖
2

< ε (5)

or ŝ =argmin
s

‖y − Φ · Ψ · s‖2, subject to ‖s‖
1

< τ (6)

or ŝ =argmin
s

h
‖y − Φ · Ψ · s‖2 + τ.‖s‖

1

i
(7)

Various solutions to sparse approximation have been proposed, such
as matching pursuit (MP), LASSO (least absolute shrinkage and
selection operator), basis pursuit (BP), gradient pursuit (GP). The
performance of sparse signal reconstruction does show some inter-
dependence between the number of measurements, measurement
noise, signal sparsity and the reconstruction algorithm itself [5, 6].
It has been found that low complexity greedy solutions, such as
matching pursuit or even direct thresholding, can provide compa-
rable performance to that of iterative convex optimization using
BP, under certain conditions. MP is also attractive because it is
extendable to the case of distributed compressive sensing and also
the possibility of perceptually motivated extensions [7].

The sparse excitation formulation presented here is different
from eq.(4). To exploit excitation sparsity of speech, we use a signal
dependent impulse response matrix h in place of Ψ. This requires
estimation of both h, s jointly, which is shown to be possible through
the matching pursuit approach.

3. SPARSITY IN SPEECH

The successful models of generating speech and audio signals have
been (i) linear system model for speech and (ii) sinusoidal model
(AM-FM) for both speech and music. [8] Both are parametric mod-
els and parsimoniously represent the time-varying nature of these
signals. (For high (transparent) quality reconstruction, such as for
music, production models along with a residual signal model is
used.) Because of the time-varying nature, we need to do sensing
and compressing of a short duration of the signal. It is known that
the perceptually significant features of spectral resonances (for-
mants) and the harmonicity due to periodic excitation, are the most

important and basic parameters in speech and audio. In speech, we
perform either linear prediction analysis or cepstrum analysis of the
signal x to separate the formant and periodicity information.

To explore sparsity, similar to x = Ψ · s in CS, we can consider
several alternative representations of a speech frame:

x = C
−1 · θ1 (8)

x = F
−1 · θ2 (9)

x = F
−1 · exp {F · θ3} (10)

x = h · r (11)

Eq.(8) describes a DCT where C is the real valued transform ma-
trix and θ1 are the DCT coefficients. Similarly, θ2 corresponds to
the DFT matrix F, which is complex valued. θ3 corresponds to
the homomorphic mapping to the cepstrum domain. The formant
and periodicity parameters become additive in the cepstrum domain,
whereas they are multiplicative in the spectral domain. However,
the cepstrum relation to x is non-linear, although homomorphic; this
would lead to non-linear constraints in eq.(3) and hence, it will be
even more difficult to solve the CS recovery problem. The DCT or
DFT mapping is linear, but the degree of sparsity would be in ques-
tion for speech or audio. The signal periodicity induces harmonicity
in the spectrum as well as spreading of the harmonics due to the
implicit windowing of the signal. (In sinusoidal modeling, a more
compact representation of the amplitude, frequency and phase pa-
rameters is possible because of the generative model of synthesis,
which cannot be expressed as a linear transform required in CS.)

The fourth alternative given by eq.(11) provides a linear sparse
representation of speech in the time domain itself. The periodic-
ity in the signal gets reflected as harmonics in the spectrum and the
number of periods in a typical window is far fewer than the num-
ber of harmonics in the spectrum, resulting in a greater sparsity of
the representation. Aperiodicities in speech causes spreading of the
harmonics, further reducing sparsity; but, this does not affect sig-
nal domain sparsity. Using the linear model of speech production,
the signal spectrum θ2 can be composed as the product of excita-
tion and vocal-tract spectra and the excitation then can be obtained
through inverse filtering based on the spectral envelope. Let the con-
volution relation be x[n] = h[n] ∗ r[n], where h[n] is the signal
domain impulse response of the smooth spectral envelope and r[n]
is the residual excitation component. The convolution relation can
be expressed in a matrix form given in eq.(11), where h is N × N

impulse response matrix and r is a N × 1 excitation vector. The
matrix h would be Toeplitz lower triangular for linear convolution
and circulant Toeplitz for circular convolution. The representation
using θ2 is related to eq.(11) through the respective Fourier trans-
forms: θ2[k] = H[k] · r[k]. Often, H[k] is derived from x using
linear prediction or cepstrum formulation [9].

The AR (autoregressive) parametric approximation results in an
IIR response which is truncated to FIR to obtain h; the truncated
length K can be > N . This leads to h being N × K, K > N ,
bringing in the effect of previous frame excitation signal also.

4. SPARSE SIGNAL RECONSTRUCTION

It has been shown that redundant dictionaries are useful for the suc-
cess of MP; hence,Ψ in (4) need not beN×N butN×K, K > N

[6], inducing a higher dimensionality for the sparse vector s. Thus,
Φ · Ψ would be aM × K matrix withM < N < K.

For speech, a sparse model based on DCT or DFT is directly
usable in eqs.(3) or (4) with the substitution of Ψ = C−1 or Ψ =
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Fig. 1. Example of CS recovery of speech: (a,e) 40ms speech frame, (b,f) residue signal (c,g) estimated residue (d,h) spectra of estimated LP,
speech signal and recovered signal. Left column: signal with exact sparsity. Right column: original speech with approximate sparsity.

F−1. For the inverse filter based sparse model, x = h · r, the im-
pulse response matrix h is signal dependent, unlike the DCT or DFT
matrices. h can be chosen to be an N × N circulant or an N × K

Toeplitz for either circular convolution or linear convolution of the
impulse response. Since h is signal dependent and unknown, we
propose to construct a codebook of size L of such matrices from the
training speech data: h ∈ {h1,h2, ...,hL}. Then, the CS optimiza-
tion problem in the time domain can be stated as:

[̂r, ĥ] = argmin
r,h

‖y − Φ · h · r‖2, and ‖r‖
0

= T, (12)

and x̂ = ĥ · r̂

where the search is over the cross product of matrix codebook and
the basis vector set Φ. The solution complexity gets magnified lin-
early by a factor of L, the size of the codebook. Since we use MP,
this is manageable. It may be noted that the measurement vector y
isM ×1 and we apply matching pursuit to the product matrixΦ ·h,
which is M × K. We choose K > N > M resulting in a redun-
dant basis in the measurement space. The use of redundant bases
has been reported to aid the MP approach to sparse reconstruction
[5] and it also suits the IIR nature of h; hence, we experiment with
K = N andK > N for signal recovery using matching pursuit.

5. EXPERIMENTS

We construct a codebook of h using the LSF representation of
speech. Using clean speech, sampled at 8KHz, of a male speaker
of duration ≈ 70s, successive frames of 40ms duration signal,
with 20ms overlap, are analyzed using the autocorrelation LP for-
mulation, of order p = 10, to obtain the LP coefficients and the
corresponding LSF coefficients. The residue signal power is also
saved as a parameter along with LSF, to obtain a 11 dimension VQ
codebook of size L = 128 using the LBG algorithm [9].

For the CS experiment, the same speech signal is analyzed in
successive frames of 40ms duration, using a different Φ for each
frame. (This provides the matched speaker CS performance which
is then extended to mismatch speaker condition). The Φ, of size
M × N , is populated with ZMUV (zero mean unit variance) Gaus-
sian samples, whose columns are nearly uncorrelated. Fixing N =

320, varyingM = 10 : 40 : 320,K = 320, 640 and T̂ are modified
as experimental parameters. Exact sparsity of the signal is obtained
by thresholding the LP residual to T number of largest magnitude
samples and reconstructing the signal; T is varied to control sparsity,
where T=320 gives the original signal. We use the performance mea-
sures of recovered signal SNR with respect to the synthesized signal,
log-likelihood ratio (LLR) [9] of the estimated LP parameters with
respect to those used for synthesis and SNR of CS recovery in the y

measurement domain.
Fig.1 shows an example frame of CS recovery; the left column

signal has a sparsity of T=40 and the right column is original signal
(T=320); T̂ is fixed as 80 for both and the number of measurements
M=240. It can be seen that the quality of reconstruction is fairly good
for both the cases, indicating that MP is effective not only for sparse
signals, but nearly sparse also, such as the original speech. More
importantly, it is found that the estimated LP spectrum is nearly the
same as the direct VQ of exact LP parameters, in both cases. The
estimated sparse residue also depicts some degree of periodicity in
the signal, better with the original signal.

The scatter plot in Fig.2 shows the statistical behaviour over the
whole 70s of speech. Each of the colored regions shows the strong
positive correlation between the signal domain performance and that
of CS measurement domain. Over the whole speech, reconstruction
error is in the range of 5 − 30dB SNR, indicating that the tech-
nique works well for a large variety of speech spectra and atleast
5dB SNR. The best performance (blue) is for higher measurements,
M = 320, and large redundancyK = 640. As expected, redundant
bases provide some advantage, but the performance is only slightly
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Fig. 2. Scatter plot of signal SNR Vs measurement space (MP) SNR
for different M, K and est-T; approx. 3000 frames of speech is shown.
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Fig. 3. Average recovered signal SNR for different T (color), increas-
ing M and est-T; M indicated by the final value of est-T.

sacrificed for lower M and K (green), requiring much less com-
putation. Increasing T̂ keeping other parameters same as in green,
increased the CS domain performance, but did not alter SNR much.
To examine this more closely, a few frames of the signal are an-
alyzed in a Monte-Carlo fashion, by averaging the SNR and LLR
performance for ten repetetions of differentΦ, for each combination
of the parameter set: T , M , T̂ , fixing K = 320. These results are
presented in Figs.3 and 4. It is found that, except for the case of very
low sparsity (T = 10), full residue (T = 320) SNR-sig performance
is close to that of T = 50 indicating robustness to approximate spar-
sity. Moderate number of measurements (M > 130) is required for
a monotonic increase in performance with respect to T̂ . Interest-
ingly, this comes out in Fig.4 where the LP estimation error (LLR)
is lowest for T̂ in the range of 50 − 90. For small M , the LLR is
significantly high, whereas otherwise, the LP estimate is close to the
optimum.

We note that low LLR distortion implies good intelligibility of
speech and high SNR implies good listening quality. Thus, with a
combination of moderateM , K and T̂ it is possible to achieve use-
ful speech reconstruction through sub-Nyquist sampled CS. Informal
listening to the recovered speech also corroborate this conclusion.
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Fig. 4. Average Log-likelihood ratio of estimated LP spectrum wrt
signal, for different T (color), increasing M and est-T; M indicated
by last point of est-T.

6. CONCLUSIONS

We have shown that compressive sensing recovery is possible for
sparsely excited signals, even when the sparsity inducing impulse
response matrix is unknown, such as in speech. Matching pursuit is
found to be effective and efficient to jointly estimate both the sparse
excitation and the impulse response matrix. The signal reconstruc-
tion accuracy can be in the range of 10− 30dB which can be useful
for specific speech applications, such as recognition or coding.
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