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ABSTRACT

Using analysis-by-synthesis (AbS) approach, we develop a soft deci-
sion based switched vector quantization (VQ) method for high qual-
ity and low complexity coding of wideband speech line spectral fre-
quency (LSF) parameters. For each switching region, a low com-
plexity transform domain split VQ (TrSVQ) is designed. The overall
rate-distortion (R/D) performance optimality of new switched quan-
tizer is addressed in the Gaussian mixture model (GMM) based para-
metric framework. In the AbS approach, the reduction of quanti-
zation complexity is achieved through the use of nearest neighbor
(NN) TrSVQs and splitting the transform domain vector into higher
number of subvectors. Compared to the current LSF quantization
methods, the new method is shown to provide competitive or better
trade-off between R/D performance and complexity.

Index Terms— VQ, LSF quantization, GMM.

1. INTRODUCTION

Low complexity, but high quality vector quantization (VQ) of LSF
parameters has attracted much attention in the current literature [5],
[7], [8], [9], [10], [12], [13]. The complexity issues in VQ are
more important to address for the applications where the require-
ment of higher perceptual quality is achieved through the alloca-
tion of higher bitrate. In these applications, such as in wideband
speech coding, the complexity of LSF VQ is very high and hence,
it is important to keep the complexity under check without sacrific-
ing the R/D performance. One of the most cited low complexity VQ
schemes is split VQ (SVQ) which was first proposed by Paliwal and
Atal for telephone-band speech LSF coding [1] and then extended
to wideband speech LSF coding [4]. SVQ is a product VQ scheme
in which the LSF vector is split into subvectors and then quantized
independently; this approach sacrifices the correlation between the
subvectors and thus, leads to a coding loss, referred to as “split loss”
[6]. To recover the split loss, So and Paliwal have recently proposed
switched SVQ (SSVQ) method [12], [8] which is shown to provide
better R/D performance than SVQ at lower computational complex-
ity, but at the requirement of higher memory. In SSVQ, the vector
space is divided into non-overlapping Voronoi regions1 and a sepa-
rate SVQ is designed for each region. An input vector to be quan-
tized is first classified to a Voronoi region using NN criteria and then,
the region specific SVQ is used for quantization. In a comparative
study [11], So and Paliwal have shown the efficiency of SSVQ over
several other structured VQ methods for quantizing the wideband

1These Voronoi regions are referred to as “switching regions” in [12],
[11]. In this paper, Voronoi region and switching region are used interchange-
ably.

LSF parameters. We also have proposed two stage VQ methods [10],
[13] which are shown to provide a better trade-off between R/D per-
formance and complexity. The SVQ, SSVQ and two stage VQ meth-
ods are non-parametric VQ methods whose R/D performances have
been shown to be good using an experimental approach. Currently,
there is much interest for designing and analyzing the VQ methods
in a GMM based parametric framework [3], [5]. Using GMM based
approach, we have recently addressed the R/D performance optimal-
ity of SSVQ method in [14] where the optimum SSVQ is shown to
provide better performance than the non-parametric SSVQ.

In this paper, we seek for further reduction in complexity with-
out sacrificing the R/D performance. For multi-variate Gaussian
source coding, we have recently shown that the transform domain
SVQ (TrSVQ) method [15] can recover the split loss of an SVQ
through the use of a de-correlating transform. The transform domain
approach provides the major advantages of low complexity and R/D
performance optimality. Hence, we investigate the use of TrSVQ
where the source PDF is modeled using GMM. Although this ap-
proach is effective for a general VQ problem, there is a specific lim-
itation for LSF quantization, viz. the non-linear measure of spectral
distortion (SD)2 can not be used in the transform domain. We note
that the analysis-by-synthesis (AbS) approach of Subramaniam and
Rao [5] can be used for searching the optimum code-vector that pro-
duces the least SD. However, the AbS approach is computationally
intensive than the direct quantization. We recognize that the refine-
ment through AbS loop results in a code-vector which will be in the
vicinity of input LSF vector and thus, this observation can be used
for reducing the quantization complexity. In this paper, we explore
the use of optimum TrSVQ in the AbS framework, which offers both
low complexity as well as optimum R/D performance through the
use of GMM. The new method is shown to provide competitive per-
formance compared to the optimum SSVQ at lower complexity and
better performance than the GMM based VQ (GMVQ) method of
Subramaniam and Rao [5].

2. SOFT DECISION BASED ABS QUANTIZATION

In the AbS framework, we develop the soft decision based switched
TrSVQ (SSTrSVQ) method and address its R/D performance opti-
mality using a parametric model of the source PDF. The basis of
the SSTrSVQ method is to divide the vector space into M number
of non-overlapping Voronoi regions and design optimum TrSVQ for
each region; the switching codebook consists of M mean vectors of
Voronoi regions as the code-vectors. An input vector is quantized
using L number of nearest neighbor (NN) TrSVQs (where L < M )

2The perceptually motivated objective method used for evaluating the
LSF quantization methods is the spectral distortion (SD) [1], [11].
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Fig. 1. Soft decision based switched TrSVQ (SSTrSVQ)

and then the winning candidate, among the L quantized vectors,
is selected through the AbS approach. If we choose L = 1, the
SSTrSVQ method becomes a hard decision based switched quantizer
like SSVQ. For SSTrSVQ, the increased computational complexity,
due to the use of multiple TrSVQs (as L > 1), is kept under check
through the use of low complexity TrSVQ method where the trans-
form domain vector is split into higher number of subvectors. Fig. 1
shows the block diagram of SSTrSVQ method; the algorithmic steps
are:

1. The input vector is compared with the M mean vectors of
Voronoi regions (or switching regions) using square Eu-
clidean distance (SED) measure and the SED distance values
are rank ordered (sorted); according to the rank ordering, the
L number of NN TrSVQs are chosen from M TrSVQs for
quantization.

2. Quantize the input vector using the L NN TrSVQs.

3. Determine the best quantized vector using weighted square
Euclidean distance (WSED) measure3.

2.1. Optimum R/D performance

The issue of R/D performance optimality is addressed using the
GMM based framework. The source PDF of each switching re-
gion is modeled as a multi-variate Gaussian component of the
GMM. Since the switching regions are nothing but Voronoi regions
of the first stage quantizer, the mixture components of the GMM
are assumed to be truncated and non-overlapping. Let X be the
p-dimensional source whose PDF is modeled using a Gaussian
mixture (GM) density of M components, given as

fX(x) ≈
MX

m=1

αm N (μm,X, Cm,X) (1)

where αm, μm,X and Cm,X are the prior probability, mean vec-
tor and covariance matrix of the mth Gaussian component andPM

m=1 αm = 1. The approximate equality used in Eqn. 1 is due to
the use of finite M and truncated components. While the direct R/D
performance analysis of a GMM source is not easy to carry out [3],
we consider a linearized approach [5] where the overall quantization
distortion of the source is expressed as

DX ≈ DGMM =
MX

m=1

αm DG,m(bm) (2)

3The direct use of SD in VQ is complexity limited. It is shown in [2]
that the SD can be approximated using WSED measure where the spectral
sensitivity coefficients are the weighting values.

where DG,m(bm) is the incurred distortion of the TrSVQ for the mth
Gaussian component of GMM and bm is the allocated bits/vector to
the mth region specific TrSVQ. We need to solve for the optimum
bit allocation, bm, such that DGMM is minimized. Since, the source
PDF of each Voronoi region is modeled as a multi-variate Gaussian
with known parameters, we can use the high resolution quantiza-
tion distortion of TrSVQ [15] for an overall distortion expression of
Eqn. 2 and then optimize for bm. The non-overlapping Voronoi re-
gions (or switching regions) of SSTrSVQ method are determined
using the LBG algorithm and we compute the Gaussian parame-
ters for each Voronoi region. The switching codebook consists of
{μm,X}M

m=1 as the code-vectors.

2.1.1. Inter-cluster bit allocation

The optimality of the SSTrSVQ method is addressed by achieving
the best R/D performance through the optimum bit allocation among
the Gaussian components; this is referred to as inter-cluster bit allo-
cation which can be carried out using the variable rate scheme [5].

In a variable rate scheme, the average bits/vector (bavg) is fixed,
but the actual bits/vector changes with the input vector. The first
stage quantizer (switch) uses bc = log2 M bits, followed by the
second stage quantization (TrSVQ) using bm bits for the mth region.
Thus, the coder becomes a variable rate coder because bm varies
according to the changing switching decision. The variable bitrate
constraint is given as

bavg =
MX

m=1

αm (bc + bm) = bc +
MX

m=1

αm bm, (3)

where bavg is a design parameter as in a fixed rate coder. The opti-
mum inter-cluster bit allocation is solved by minimizing the overall
distortion, given in Eqn. 2, to the constraint of average bits, shown
in Eqn. 3. Evaluation of DGMM requires the best performance of
DG,m(bm), which is given by the quantization distortion result of
TrSVQ method as (using Eqn. (9) of [15])

DG,m(bm) =
“
2bm

”− 2
p Km |Cm,X| 1p , (4)

where

Km =

»
p

hQSm
i=1

“
Kqm,i

qm,i

”pm,i
i 1

p

–
and

Kqm,i = 2
ˆ qm,i

2
Γ

` qm,i

2

´˜ 2
qm,i

h
qm,i+2

qm,i

i qm,i
2

.

Here, Γ(.) is the usual Gamma operator and qm,i is the dimension of
ith split subvector in transform domain for the mth cluster specific
TrSVQ method (1 ≤ i ≤ Sm). Note that, for the mth region, the
number of splits (Sm) and the dimensions of split subvectors (qm,i)
are design parameters which can be different for different Voronoi
regions according to the choice of the designer. The optimization
is only for evaluating bm given Sm and qm,i; the optimization is
carried out using Lagrange method.

The optimum inter-cluster bit allocation for SSTrSVQ method
that minimizes the overall distortion of Eqn. 2, subject to the variable
rate constraint of Eqn. 3 is given by

bm = (bavg − bc) + p
2

× log2

2
4 Km|Cm,X| 1p

QM
j=1

»
Kj |Cj,X| 1p

–αk

3
5 , 1 ≤ m ≤ M.

(5)
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2.1.2. Intra-cluster bit allocation

For each cluster (switching region), the optimum bit allocation to the
transform domain subvectors in TrSVQ method is given as (using
Eqn. 8 of [15])

bm,i = qm,i
bm
p

+
qm,i

2

× log2

2
64

Kqm,i
qm,i

|Cm,ZiZi |
1

qm,i

»QSm
k=1

„
Kqm,k
qm,k

«qm,k
– 1

p |Cm,X| 1p

3
75 ,

1 ≤ i ≤ Sm and 1 ≤ m ≤ M

(6)

where bm,i is the number of bits allocated to the ith subvector for
the mth region specific TrSVQ; for the mth region, Cm,ZiZi is the
covariance matrix [15] of the ith subvector in transform domain.

2.2. Complexity of SSTrSVQ

Let us consider L = 1; for this case, the computational steps as-
sociated with SSTrSVQ method are: switching to the best Voronoi
region using SED measure, KLT transformation, SVQ of transform
domain sub-vectors and inverse KLT for reconstruction. The av-
erage computational complexity/vector is: (3p + 1)2bc + 2p2 +hPM

m=1 αm

hPSm
i=1(3qm,i + 1)2bm,i

ii
+ 2p2 flops4. For L > 1,

the order of computational complexity is nearly L times of the above
mentioned complexity. The required memory to store the switching
codebook, KLT matrices and TrSVQ codebooks is: p2bc + p22bc +PM

m=1

PSt,m

i=1 qm,i2
bm,i floats5.

3. QUANTIZATION RESULTS

The speech data used in the experiments is from the TIMIT database.
We use the specification of AMR-WB codec [16] to compute the 16-
th order LPCs which are then converted to LSF parameters. In the
experiments, 361,046 number of LSF vectors are used for training
and 87,961 LSF vectors are used for testing (distinct from training
data). To measure the wideband speech LSF quantization perfor-
mance, we use the established measure of spectral distortion (SD)
[1], [11]. A low average SD along-with minimum number of high
SD outliers is considered necessary for good spectrum quantization
performance.

The SSTrSVQ is implemented using M = 8 clusters (or switch-
ing regions) like the optimum SSVQ of [14]. For all the clusters,
TrSVQs are designed for Sm = 6, 1 ≤ m ≤ 8. The KLTs are
so ordered that the eigen values are in descending order; accord-
ingly, the 16-th dimensional transform vector is split into 6 parts
of (2,2,2,3,3,4) dimensional sub-vectors such that it results in lower
complexity. The inter and intra-cluster optimum bit allocations are
carried out using, respectively, Eqn. 5 and Eqn. 6. We experimen-
tally find the optimum value of L such that the SSTrSVQ method
provides a reasonable trade-off between R/D performance and com-
plexity. Fig. 2 shows the average SD (in dB) performance of the
SSTrSVQ method for different L (at 42 and 44 bits/vector). It is ob-
served that the performance becomes better as L increases and then
saturates quickly. We choose L = 2 so that the SSTrSVQ method

4In the current literature [5], [9], [12], [11], it is a standard practice to as-
sume that each operation like addition, subtraction, multiplication, division
and comparison needs one floating point operation (flop). With this assump-
tion, the codebook search complexity of a VQ with h-dimensional vector and
B-bit allocation is (3h + 1) × 2B flops.

5The “float” represents the required memory to store a real value.
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Fig. 2. Average SD (in dB) performance of SSTrSVQ method
for different L to choose the optimum L. (a) Performance at 42
bits/vector. (b) Performance at 44 bits/vector.

Table 1. Performance of new soft decision based switched transform
domain split VQ (SSTrSVQ) method

bits/vector Avg. SD Outliers kflops/ kfloats/
(average) SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)

42 1.110 1.47 0.017 15.20 16.44
43 1.068 1.15 0.018 16.00 17.31
44 1.026 0.88 0.009 18.08 19.84
45 0.988 0.69 0.006 19.82 21.79
46 0.951 0.52 0.005 21.86 24.00

has low complexity even though L = 3 would have given slightly
better performance. Table 1 shows the performance of SSTrSVQ
method using L = 2.

We compare the performance of SSTrSVQ method over the tra-

ditional SVQ, and recently proposed GMVQ [5], optimum SSVQ

[14] and normalized two stage SVQ (NTSSVQ) [13] methods. In

the case of SVQ [4], the 16-th dimensional LSF vector is split into

5 parts of (3,3,3,3,4) dimensional sub-vectors6; the performance of

SVQ is shown in Table 2. Comparing Table 1 and Table 2, it can be

observed that the SSTrSVQ provides better R/D performance than

SVQ, even at lower computational complexity, but with the require-

ment of higher memory. The SSTrSVQ method saves 3 bits/vector

compared to the SVQ method. Table 3 shows the performance of

GMVQ method using 8 Gaussian mixtures; note that the GMVQ

functions with rate-independent complexity. Comparing Table 1 and

Table 3, it is observed that the SSTrSVQ provides 2 bits/vector ad-

vantage over GMVQ, but at the requirement of higher complex-

ity. The performance of five part optimum SSVQ, with 8 switch-

ing directions, is shown in Table 4 where the bit allocations to the

split subvectors and switching directions are carried out according to

[14]. Comparing Table 1 and Table 4, we observe that the SSTrSVQ

method provides competitive performance to the optimum SSVQ

method, even at much lower computational complexity and memory.

Table 5 shows the performance of NTSSVQ method where the bit al-

location is carried out according to [13]. We note that the SSTrSVQ

method provides better R/D performance than the NTSSVQ method

and saves nearly 1 bit/vector, but at the requirement of higher mem-

ory. Thus, considering the trade-off between R/D performance and

complexity, the new SSTrSVQ method can be chosen as the potential

solution for LSF quantization in wide-band speech coding.

6Five part SVQ is also implemented in [8], [11] to compare with five part
SSVQ and several other VQ methods.
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Table 2. Performance of split VQ (SVQ) method

bits/vector Avg. SD Outliers kflops/ kfloats/
SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)

42 1.258 2.63 0.000 24.32 5.63
43 1.214 2.02 0.000 27.64 6.40
44 1.182 1.83 0.000 30.97 7.16
45 1.116 0.97 0.000 35.32 8.19
46 1.074 0.74 0.000 41.98 9.72

Table 3. Performance of GMVQ method

bits/vector Avg. SD Outliers kflops/ kfloats/
(average) SD 2-4 dB >4 dB vector vector

(dB) (in %) (in %) (CPU) (ROM)

42 1.188 2.64 0.026 9.02 2.30
43 1.147 2.23 0.028 9.02 2.30
44 1.093 1.68 0.013 9.02 2.30
45 1.055 1.38 0.014 9.02 2.30
46 1.009 1.02 0.005 9.02 2.30

4. CONCLUSIONS

We develop an AbS based switched quantization method which is

a deviation from the commonly used hard decision based switch-

ing. It is well-known that the hard decision based switching leads

to the constraint of choosing the optimum code-vector. The use of

soft switching circumvents the problem of hard switching and thus,

leads to better R/D performance. For the SSTrSVQ method, the in-

creased complexity due to soft switching is kept under check through

the use of NN optimum TrSVQs and splitting the transform domain

vector into higher number of subvectors. In a GMM based paramet-

ric framework, the optimum SSTrSVQ is shown to provide a better

trade-off between R/D performance and complexity.
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