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ABSTRACT

Gaussian Mixture Model (GMM)-based Kalman predictive

coders have been shown to perform better than baseline GMM

Recursive Coders in predictive coding of Line Spectral Fre-

quencies (LSFs) for both clean and packet loss conditions

However, these stationary GMM Kalman predictive coders

were not specifically designed for operation in packet loss

conditions. In this paper, we demonstrate an approach to

the the design of GMM-based predictive coding for packet

loss channels. In particular, we show how a stationary GMM

Kalman predictive coder can be modified to obtain a set of

encoding and decoding modes, each with different Kalman

gains. This approach leads to more robust performance of

predictive coding of LSFs in packet loss conditions, as the

coder mismatch between the encoder and decoder are min-

imized. Simulation results show that this Robust GMM

Kalman predictive coder performs better than other baseline

GMM predictive coders with no increase in complexity. To

the best of our knowledge, no previous work has specifically

examined the design of GMM predictive coders for packet

loss conditions.

Index Terms— speech coding, Kalman filtering, GMM,

vector quantization

1. INTRODUCTION

Vector quantization based on Gaussian Mixture Models

(GMMs) for vector data such as Line Spectral Frequen-

cies (LSFs) has been widely investigated in recent years

([1],[2],[3]). In [4, 5], we applied Kalman filtering princi-

ples to GMM predictive coding of LSFs to account for the

quantization noise. With this GMM-Kalman framework, one

obtains an online a-posteriori GMM (online GMM-KF) that

adapts its transforms and codebooks at each time instance,

leading to better predictive coding. Moreover, we demon-

strated how the online GMM-KF can be used to obtain a

stationary GMM Kalman predictive coder (GMM-KF-ST)

which uses fixed transforms. The GMM-KF-ST provided

better performance in both clean and packet loss conditions
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than the standard GMM-RC ([2]) at roughly the same com-

plexity. While the GMM-KF-ST in [4, 5] performed well in

packet loss conditions, this predictive coder was not explicitly

designed to operate in packet loss conditions. In fact, to the

best of our knowledge, no previous papers have explicitly at-

tempted to design GMM predictive coding of LSFs for packet

loss conditions. This is the subject of this paper.

In particular, we explore how to take the stationary GMM-

KF-ST, and convert it into a predictive coder more robust for

packet loss conditions. In contrast to the GMM-KF-ST, the

robust design presented in this paper consists of: 1) An en-

coder which utilizes a set of robust encoding Kalman gains; 2)

A decoder which switches its Kalman decoding gains based

on its previous channel outcomes; 3)An improved Packet

Loss Concealment (PLC) strategy by developing a suitable

signal probability density function (pdf) at the decoder. As

with the GMM-KF-ST, this robust GMM Kalman predictive

coder (RB-GMM-KF) is of a low complexity, but provides

much better performance than the baseline GMM-KF-ST, and

the GMM-KF-RC in packet loss conditions.

The rest of the paper is organized as follows: Section

2 contains a brief review of the GMM-KF-ST. Section 3

presents the design of the Robust GMM Kalman coder; Sec-

tion 4 presents simulations and Section 5 presents conclu-

sions.

2. REVIEW OF STATIONARY GMM-KF CODER

First we define the state vector xk based on p source vectors,

each of dimension d, as xk = [s′k . . s′k−p+11]′. Now consider

the GMM-KF-ST coder [4, 5] based on the a-priori pdf (1)

p(xk|Zab
k−1) =

L∑

j=1

P (Mj,k|Zab
k−1)p(xk|Mj,k, Zab

k−1), (1)

where each Gaussian pdf p(xk|Mj,k, Zab
k−1) is defined by sta-

tionary covariances Σ̄−
i and conditional means x̂i,k|k−1. Note

that Zab
k−1 = [zab

1 , · · · , zab
k−1] denotes the set of common ab-

solute measurements (defined by quantization) available to all

coders, and that Mj,k denotes the jth model at time k. With

each conditional density p(xk|Mj,k, Zab
k−1), we associate a

linear plant and a measurement model given as,

xk+1 = Fixk + wi,k; zi,k = Hi,kxk + vi,k. (2)
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The ith coder predicts the a-priori state as x̂i,k|k−1 =
Fix̂i,k−1|k−1 where the predicted state x̂i,k|k−1 becomes

the conditional mean. The prediction error xk − x̂i,k|k−1 is

Karhunen-Loeve transformed as ψi,k = H̄i(xk − x̂i,k|k−1)
(with H̄i obtained from an eigendecomposition of Σ̄−

i ), and

quantized to form the innovation ψ̂i,k. This is modeled by the

measurement model in equation (2).

The GMM-KF-ST follows the competition and update

cycle using the Kalman gains K̄i and
¯̃Ki respectvely. In

the competition cycle each sub-coder forms its candidate

quantization by, x̂i,k|k = x̂i,k|k−1 + K̄i(zi,k − H̄ix̂i,k|k−1).
The coder i∗ which minimizes ‖xk − x̂i,k|k‖2 is chosen and

only the quantization information of the selected coder i∗ is

transmitted. The non-selected coders j �= i∗, update their a-

posteriori state by x̂j,k|k = x̂j,k|k−1+ ¯̃Kj(z̃j,k−H̄ix̂j,k|k−1),
where z̃j,k is created based on zi∗,k, which is the measure-

ment of the winning coder and defines the common absolute

measurement. This GMM-KF-ST provides better perfor-

mance than a baseline GMM-RC predictive coder in [2] for

both clean and packet loss conditions. Now we explore how

to take the GMM-KF-ST, and build a more robust GMM

Kalman predictive coder explicitly designed for packet loss.

3. DESIGN OF A ROBUST GMM KALMAN
PREDICTIVE CODER FOR PACKET LOSS

In predictive coding based on GMMs, the codebooks are de-

fined by the Gaussian pdfs. As the conditional means change,

the location of the codebooks move in the vector space,

and as the conditional probabilities change, the number of

codepoints assigned to each Gaussian also changes. When

packets are lost, the codebooks at the encoder and decoder

are inherently mismatched, particularly the conditional means

x̂i,k|k−1, and conditional coder probabilities P (Mj,k|Zab
k−1).

To achieve better performance at the decoder, the mismatch

between the encoder and decoder must be taken into account.

To obtain a more robust GMM Kalman predictive coder,

we propose the following steps. First, we determine special

Kalman decoding gains that are based on whether the previ-

ous packet was lost or received. This is due to the fact that the

error covariance at the decoder is contingent upon whether

the previous packet was received or lost. Consequently to

minimize the mismatch between the conditional means at the

encoder and decoder, the decoder must handle the received

innovations ψ̂i,k, based on these contingencies. Second, we

determine special Kalman encoding gains that are based on

the fact that the encoder never knows whether the transmit-

ted innovations are received or lost. That is, we find average

expected error covariances for the sub-coders at the encoder

(calculated using the decoder error covariances). These aver-

age expected error covariances are utilized to obtain the spe-

cial Kalman encoding gains, once again to minimize the mis-

match between the encoder and decoder conditional means.

Utilizing the average expected error covariances at the en-

coder, one can also obtain better bit allocations than in the

GMM-KF-ST. Finally, a modified PLC scheme in the decoder

builds a signal pdf based on the past decoded source vectors to

provide enhanced PLC. To obtain the complete robust GMM-

KF predictive coder, we must follow an iterative approach in

which one first fixes the encoder, and finds the decoder pa-

rameters, and then fixes the decoder, and finds the encoder

parameters. Through iteration, one obtains a final coder. Now

let us describe these steps.

3.1. Decoder Design for the Robust GMM-KF Coder

Let the indicator variable γk be defined such that γk = 1
denotes a successful reception and γk = 0 denotes a packet

loss at time k. Consider Figure 1 which describes different

possibilities at the decoder based on γk and γk−1. We use ‘r’

to denote the outcome ‘received’ (γk = 1) and ‘e’ to denote

an erasure or packet loss (γk = 0). Now let us define the

possible ‘modes’ of the decoder based on the γk and γk−1 as

{Φr|r,Φr|e, Φe|{r,e}}. The actual mode of the decoder at time

k is denoted by Md
k where Md

k ∈ {Φr|r, Φr|e,Φe|{r,e}}. For

example the state Md
k = Φr|e denotes γk = 1 and γk−1 = 0.

We assume the Bernoulli loss model and loss probability as

ρ. Now for each successful reception, each sub-decoder could

either have been selected or non-selected at the encoder (i.e.,

one Gaussian mixture is selected to quantize the LSF vector

sk, the other L−1 mixtures are not selected). We denote these

two events by ‘s’ and ‘n’, respectively. Note that in each sub-

decoder’s domain r = {s ∪ n}. We use mi,k = s to indicate

that the ith sub-decoder is selected (‘s’), and mi,k = n to

indicate non-selected (‘n’). If the innovation is lost (‘e’) at

time k, then mi,k =‘e’.

The key is to learn the fixed (stationary) error covariance

matrices for the different modes of the decoder given in Fig-

ure 1. In particular, for Φr|r, we need to determine Σ̄−
i,s|s

for all the sub-coders i = 1, · · · , L, which corresponds to

the case mi,k = s and mi,k−1 = s. Similarly, we must

also determine, Σ̄−
i,n|s, Σ̄−

i,s|n, and Σ̄−
i,n|n. These four error

covariance matrices will be used to determine corresponding

Kalman decoding gains K̄i,s|s,
¯̃Ki,n|s, K̄i,s|n, and

¯̃Ki,n|n.

Then, in operation, when the decoder enters mode Φr|r, these

Kalman gains are utilized both to create the decoded value

(e.g.,., x̂i∗,k|k = x̂i∗,k|k−1 + K̄i,s|nψ̂i∗,k if mi∗,k = s and

mi∗,k−1 = n), and to update the non-selected sub-coders.

Similarly, for Φr|e, one must obtain the error covariances

Σ̄−
i,s|e, Σ̄−

i,n|e and corresponding Kalman decoding gains

K̄i,s|e,
¯̃Ki,n|e. How do we obtain these parameters?

We fix the (stationary) encoder, and for simplicity, fix the

coder conditional probabilities (and hence the bit allocations),

and run the decoder as a stationary GMM decoder over a

training set and under packet loss conditions. Whenever the

decoder enters the mode Φr|r or Φr|e, for each sub-coder i,
it computes a set of Kalman recursions related to training the

relevant error covariance parameters but completely unrelated
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to the actual decoding. That is, for each i, it computes

Σs
i = Σi,k|k = Σi,k|k−1 − K̄i(I − Δ̄i)Σi,k|k−1 if mi,k = s

Σn
i = Σi,k|k = Σi,k|k−1 − ¯̃Ki,kH̄iΣi,k|k−1 if mi,k = n

in which Δ̄i is the stationary noise factor for the ith coder.

Note that these Kalman recursions are based on the same prin-

ciples guiding the error covariance updates given in [4, 5].

Similarly, when the decoder enters the mode Φe|{r,e}, it com-

putes Σe
i = Σk|k−1. By running the decoder over a represen-

tative packet loss condition, these recursions are run in each

mode until they achieve roughly fixed values (i.e., depending

upon the mode, the error covariance for each sub-decoder i
jumps between fixed Σs

i , Σ
n
i , and Σe

i ). Now let us consider

how to obtain the error covariances of Φr|r (i.e., Σ̄−
i,s|s,Σ̄−

i,n|s,

Σ̄−
i,s|n, and Σ̄−

i,n|n). In general, one follows Kalman filtering

principles as in [4, 5] to obtain predictive error covariances

from filtered error covariances, i.e., Σ̄−
i,s|s = FiΣs

i F
′
i + Qi

where Qi is the plant noise covariance matrix. In this manner,

for a fixed encoder, one is able to obtain different error covari-

ance matrices for the modes Φr|r, and Φr|e, and these error

covariances are utilized to determine corresponding Kalman

decoding gains as in [4, 5]. This procedure must be repeated

for each fixed encoder. Now a natural question is given the

decoder defined as in Figure 1, how does one design an ap-

propriate encoder?

Fig. 1. State Transition Diagram at the Decoder

3.2. Encoder Design for the Robust GMM-KF Coder
Suppose we have a fixed decoder based on the error covari-

ances and Kalman decoding gains as described in Figure 1

and in the previous subsection. To design an encoder for this

decoder, one must take into account the fact that the encoder

never knows which mode the decoder is in, as the encoder

never knows whether a transmitted innovation is received or

lost. To minimize the mismatch between the encoder condi-

tional means, and to achieve more robust encoding, the en-

coder modifies its GMM coding error covariances by setting

them to expected error covariances, calculated using the de-

coder error covariances.

In particular, for the fixed decoder, the encoder, for each

sub-coder i, can calculate expected decoder error covariances

Σ̄E
i,s and Σ̄E

i,n, corresponding to whether the sub-coder i is

selected or non-selected, i.e., Σ̄E
i,s = (1 − ρ)Σs

i + ρΣe
i and

Σ̄E
i,n = (1 − ρ)Σn

i + ρΣe
i . These expected decoder error

covariance matrices are based on the uncertainty regarding

packet reception or loss, and are used to determine Kalman

encoding gains. Then for each sub-coder i, we obtain new

unconditional error covariances Σ̄E
i . We find these uncon-

ditional error covariances by probabilistic weighting of Σ̄E
i,s,

and Σ̄E
i,n, in which the probabilities are obtained based on

the sub-coder probabilities (i.e., how often the sub-coders are

used in practice over training data). The new fixed Σ̄E
i , are

used to define the new bit allocations which now take into

account the uncertainty regarding the reception or loss of a

transmitted innovation.

In general, for each re-design of the encoder, the decoder

must be re-designed, and vice-versa, until the encoding and

decoding parameters achieve roughly fixed values. Now let

us examine how the packet loss concealment is designed.

3.3. Packet Loss Concealment
Consider the decoder at mode Φe|{r,e}. As the innovation is

lost in this mode we need to employ an effective PLC scheme.

In [5], in the event of packet loss the decoder probabilistically

combined the sub-coder state predictions to create a synthetic

value. That is, to conceal a lost sk, the decoder computed∑L
i P (Mi,k|Zab

k−1)x̂i,k|k−1 from which a synthetic sk substi-

tution is obtained. However, this PLC combines all the sub-

coder state vectors, even when some of the state-vectors are

not particularly accurate with regards to the actual previously

decoded value. We improve PLC in the GMM-KF system by

only using the actual decoded values. Let gk be the actual de-

coded value (i.e., the one that is used in the speech decoder

in signal synthesis) at time k. That is, gk = [x̂i∗,k|k]↑d, (top d
elements of the vector) in which sub-coder i∗ is the sub-coder

used at time k.

The decoding mode Φe|{r,e} is continually creating a con-

ditional signal GMM p(xk|Gk) based on all past decoded

source vectors where Gk = {gk, gk−1, ..., g1}. In particu-

lar, we create p(xk|Gk) =
∑L

i=1 P (Mi,k|Gk)p(xk|Mi,kGk).
Once again, utilizing Kalman filtering principles, we consider

a linear plant and measurement model associated with condi-

tional pdf p(xk|Mi,kGk) as,

xk+1 = Fixk + wi,k; gi,k = Πixk + νi,k

The terms Fi are identical to the ones given in (2). We

see the measurements as noisy observations of the first d ele-

ments of the state xk. We use the notation x̆i,k|k−1 and x̆i,k|k
to denote state estimates for each sub-coder in the PLC mode

Φe|{r,e} as they are distinct from the states used at the en-

coder, and in the other decoding modes Φr|r, and Φr|e.

Let Πi = [Id×d 0], where I denotes the identity ma-

trix. One can show that E(νi,kν′
i,k) = E([gk − [xk]↑d][gk −

[xk]↑d]
′) = [Σ̄−

i∗s|mi,k
]�d×d (top left d × d matrix), where

mi,k ∈ s, n, e.

By utilizing the Uncorrelated Noise Model (UNM) as-

sumption ([4]) based Kalman filtering equations ([4]), we up-

date the a-posteriori states, x̆i,k|k−1 and coder probabilities

P (Mi,k|Gk−1). Now we can perform the PLC for time k by

calculating
∑L

i=1 P (Mi,k|Gk−1)x̆i,k|k−1 given γk = 0.
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Now we summarize the operation of the Robust GMM-

KF coder as follows. In encoding sk, the encoder must keep

track of mi,k and mi,k−1 (i.e., whether the sub-coder i is used

to code sk, and whether it was used to encode sk−1. Based

on these mi,k, and mi,k−1 values, each sub-coder updates its

state equation using the special Kalman encoding gains. The

quantized innovation is transmitted to the decoder. Depend-

ing upon the pattern of receptions and losses, the decoder is

in one of 3 modes as illustrated in Fig. 1, and the decoder

uses the appropriate Kalman decoding gains if the decoder is

in modes Φr|r, or Φr|e. If the packet is lost, the decoder is in

mode Φe|{r,e}, in which the PLC is performed. In this man-

ner, the encoder and decoder use different Kalman gains in

handling the quantized innovations, and as we shall see, this

leads to better performance in packet loss conditions. The

overall system is still of a low complexity similar to that of

the GMM-KF-ST, and GMM-RC.

4. SIMULATIONS

We compare the performance of this Robust GMM-KF

predictive coder (RB-GMM-KF) to the baseline stationary

GMM-KF-ST as well as a memoryless GMM non-recursive

coder (GMM-NRC) [6] in LSF quantization and transmission

in packet loss conditions. Training and Testing was based on

100000, and 30000 vectors, respectively.

Table 1 shows the LSD performance of the RB-GMM-KF,

GMM-KF-ST and GMM-NRC. We can clearly see the the

RB-GMM-KF consistently outperforms the baseline GMM-

KF-ST coder in average LSD and outliers (recall that [4, 5]

showed that the GMM-KF-ST substantially outperformed a

baseline GMM-RC based on [2] in packet loss conditions; we

do not show the results of the GMM-RC for packet loss due to

space reasons). It is interesting to note that the proposed RB-

GMM-KF achieves comparable performance to the GMM-

KF-ST at a savings of 2 or more bits. The non-predictive

GMM-NRC performs slightly better in outlier performance

but the proposed RB-GMM-KF coder achieves slightly better

average LSD performance. Table 2 shows an SNR compari-

son. Since the RB-GMM-KF can be used for vector data other

than LSFs, it is interesting to see that the RB-GMM-KF coder

outperforms all other coders in SNR.

5. CONCLUSION

In this paper, we have shown how to take a stationary GMM-

Kalman predictive coder, and modify it for operation in

packet loss conditions. This proposed RB-GMM-KF mini-

mizes the mismatch between the encoder and decoder code-

books by using fixed sets of specially designed encoding

and decoding Kalman gains which are obtained offline. The

simulation results show RB-GMM-KF outperforms its base-

line and shows comparable LSD performance to that of a

memoryless GMM-NRC. Therefore, this paper provides one

method for taking a GMM predictive coder, and making it

more robust to packet loss.

Packet loss 5% Packet loss 10%

Bits LSD LSD outlier % LSD LSD outlier %

2-4dB >4dB 2-4dB >4dB

RB-GMM-KF

20 1.24 6.55 2.56 1.55 11.77 5.73

22 1.13 5.61 2.69 1.50 10.41 5.82

24 1.06 5.55 2.45 1.40 9.47 5.69

26 0.99 5.53 2.45 1.29 9.01 5.43

GMM-KF-ST

20 1.39 8.63 5.31 1.72 14.21 7.54

22 1.22 8.05 4.36 1.63 13.45 7.48

24 1.17 7.66 4.58 1.50 11.56 7.03

26 1.14 7.26 5.21 1.43 10.94 7.05

GMM-NRC

20 1.36 6.24 2.53 1.62 10.78 5.34

22 1.26 5.61 2.48 1.55 9.94 5.27

24 1.14 4.73 2.51 1.46 8.52 5.27

26 1.14 4.36 2.37 1.43 8.14 5.19

Table 1. LSD performance of RB-GMM-KF

RB-GMM-KF GMM-KF-ST GMM-NRC

Bits 5% 10% 5% 10% 5% 10%

20 34.79 32.50 33.84 32.01 33.46 31.54

22 35.02 32.61 34.12 32.06 34.08 32.23

24 35.32 32.71 34.46 32.26 34.02 32.01

26 35.57 32.87 34.52 32.45 34.18 32.04

Table 2. SNR (in dB) performance comparison
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