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ABSTRACT

A novel online speaker clustering method suitable for real-

time applications is proposed. Using an ergodic hidden

Markov model, it employs incremental learning based on

a variational Bayesian framework and provides probabilis-

tic (non-deterministic) decisions for each input utterance,

directly considering the specific history of preceding utter-

ances. It makes possible more robust cluster estimation and

precise classification of utterances than do conventional on-

line methods. Experiments on meeting-speech data show that

the proposed method produces 70–80% fewer errors than a

conventional method does.

Index Terms— HMM, variational Bayesian algorithm,

model selection, meeting recognition

1. INTRODUCTION

Speaker clustering is a technique that classifies speech utter-

ances from multiple speakers as observed in broadcast news,

meetings, etc. so that utterances from a given speaker will be

assigned a unique label (cluster). Clustering output is com-

monly used in unsupervised speaker adaptation in recently

developed large-vocabulary continuous speech recognition

(LVCSR) systems to achieve higher recognition accuracy [1].

Most conventional clustering methods belong to a family

of batch processing methods [2] which typically require that

all utterances be present before clustering can be executed,

and in this, they do not meet the requirements for real-time

applications.

Online algorithms have also been proposed [3, 4]. The ba-

sic idea behind these algorithms is deterministic and succes-

sive classification according to a kind of (dis)similarity mea-

surement between an input utterance and existing clusters.

Deterministic classification (hard decision), however, has

difficulty in dealing with low confidence-level decisions,

which easily arise when the duration of input utterances is

too short, or when there exist two or more speakers quite

similar in vocal characteristics to one another. Since any

utterance will be classified into a unique cluster whether the

confidence-level of the decision is high or not, utterances

resulting in low confidence-levels often cause misclassifica-

tion that will accumulate in the clusters and disturb cluster

estimation. Further, clusters incorrectly estimated in this way

may cause still more misclassification.

Further, the similarity measures used in existing online

algorithms involve no more than calculating a similarity be-

tween an input utterance and currently existing clusters. Such

measures are based on the unrealistic assumption that there

existed no mistake before the current decision. We have be-

lieved that more precise classification might be attained by

conducting cluster estimation correction that takes into ac-

count the possibility of misclassification of preceeding utter-

ances.

In this paper, we propose a stochastic online speaker clus-

tering method in which incremental learning [5] is applied to

a generative model of speech utterances [6, 7]. It repeatedly

estimates model parameters and a probabilistic clustering re-

sult for each input utterance, and updates those for a certain

number of preceding utterances. The effectiveness of the pro-

posed method is demonstrated through a series of experiments

using meeting-speech data.

This paper is organized as follows: Section 2 describes

existing batch approaches based on generative models, i.e.,

ergodic hidden Markov models (HMMs); in Section 3, we

present a Bayesian formulation for our online algorithm,

based on the generative model-based approach; Section 4

gives experimental results, and in Section 5 we summarize

our work and discuss future issues.

2. MODEL-BASED CLUSTERING

Let us consider an N -state ergodic HMM (Fig. 1). This HMM

starts operation from the initial state I and makes a transi-

tion to the state i ∈ {1, · · · , N} according to the transition

probability πi. While under the state i, it repeatedly outputs

feature vectors (x) in accord with a probability density func-

tion fi (x). Its operation is completed when the final state F
is attained at the probability ai. At this point, a sequence of

feature vectors, X = (x1, · · · , xT ) is generated.

Assuming a one-to-one correspondence between states

and speakers, this HMM can be regarded as a generative

model of a speech utterance from a speaker selected out of a
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Fig. 1. Generative model of speech utterances from N speak-

ers.

set of N speakers. Given a set of model parameters θ and an

utterance X = (x1, · · · ,xT ), the probability that speaker i
has given the utterance X can be calculated as follows:

P (i | X, θ) ∝ πiai (1 − ai)
T−1

T∏

t=1

fi (xt) . (1)

Given n utterances X1, · · · , Xn, the speaker clustering pro-

cedure will be as follows: 1) estimate θ using n utterances,

2) calculate Eq. (1) using the resulting θ, and 3) select the i
which maximizes P (i | X, θ).

Steps in the above procedure are ordinarily performed in

succession, i.e., in batch processing. In the next section, we

formulate an online version of the above speaker clustering

procedure.

3. ONLINE ALGORITHM

3.1. Hyper-parameter reestimation

Online learning by stochastic models that include hidden vari-

ables can be accomplished on the basis of a generalized EM

(GEM) algorithm [5], which employs a maximum negative

free energy criterion. Here for i.i.d. (independent and iden-

tically distributed) observations (utterances) X1, X2, · · · , E-

and M-steps will be incrementally performed for each ob-

servation Xt. The difference between online (GEM-based)

and batch (traditional EM) algorithms is the E-step. At the

E-step in the online algorithm, the probability distribution for

the hidden variables is updated only for the latest observation,

rather than for all observations to that point.

Here, we employ a Bayesian approach rather than the

standard maximum likelihood (ML) approach, and use a

variational Bayesian (VB) algorithm [8] as a learning algo-

rithm, as is done in [9]. The VB algorithm is performed

in two-steps, i.e., Bayesian E- and M-steps, and an online

learning algorithm can be derived in the same way as a GEM

algorithm.

The following gives a simple description of a hyper-

parameter reestimation formula for an HMM. Here, for sim-

plicity, we assume that the probability distribution for feature

vectors is a Gaussian, fi (x) = f (x | μi, Σi).
First, we assume a parametric prior distribution for the

parameter set θ as follows:

p (θ) = D
(
π1, · · · , πN | λ

(0)
1 , · · · , λ

(0)
N

)

×
N∏

i=1

B
(
ai | κ

(0)
0,i , κ

(0)
1,i

)

N
(
μi | ν

(0)
i , ξ

(0)
i Σi

)
W

(
Σi | η

(0)
i , B

(0)
i

)
, (2)

where D, B, N , and W denote, respectively, Dirichlet, beta,

normal, and Wishart distributions. Eq. (2) is known as a con-

jugate prior, and here we refer to λ
(0)
i , κ

(0)
0,i , κ

(0)
0,i , ν

(0)
i , ξ

(0)
i ,

η
(0)
i , and B

(0)
i as hyper-parameters for prior distributions.

The goal for the VB algorithm here is to obtain locally

optimal hyper-parameters for posterior distributions: λi, κ0,i,

κ0,i, νi, ξi, ηi, and Bi, for a given sequence of utterances

and given hyper-parameters for a prior distribution. An online

hyper-parameter reestimation formula and speaker clustering

algorithm can then be derived as follows:

Initialization: Set hyper-parameters for the prior distribution

λ
(0)
i , κ

(0)
0,i , κ

(0)
1,i , ν

(0)
i , ξ

(0)
i , η

(0)
i , B

(0)
i to appropriately

small, positive values. Set sufficient statistics variables

S00,i, S0,i, S1,i, S2,i to zero.

E-step: Given the nth utterance Xn = (xn,1, · · · , xn,Tn),
calculate the Bayesian expectation z̄ni = P (i | Xn) of

hidden variables. This represents the probability that

utterance Xn belongs to the ith cluster. Then, update

the sufficient statistics variables as follows:

S00,i ← S00,i + z̄ni, S0,i ← S0,i + Tnz̄ni,

S1,i ← S1,i + z̄ni

Tn∑

t=1

xnt,

S2,i ← S2,i + z̄ni

Tn∑

t=1

xntx
T
nt. (3)

M-step: Update the hyper-parameters for the posterior dis-

tribution as follows:

κ0,i ← κ
(0)
0,i + S0,i − S00,i, κ1,i ← κ

(0)
1,i + S00,i,

λi ← λ
(0)
i + S00,i, νi ← ξ

(0)
i ν

(0)
i + S1,i

ξ
(0)
i + S0,i

,

ξi ← ξ
(0)
i + S0,i, ηi ← η

(0)
i + S0,i,
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Bi ← B
(0)
i + S2,i − 2S1,ix̄

T
i + S0,ix̄ix̄

T
i

+
ξ
(0)
i S0,i

ξ
(0)
i + S0,i

(
x̄i − ν

(0)
i

) (
x̄i − ν

(0)
i

)T

, (4)

where x̄i = S1,i/S0,i. Perform the E- and M-steps

iteratively until convergence.

Note that expectation z̄ni is calculated only for the lat-

est data Xn, while expectations regarding the older data

z̄1,i, · · · , z̄n−1,i are discarded after being added to the suffi-

cient statistics variables in accord with Eq. (3).

The algorithm derived as just described can be extended

to a “multi-buffer” version, in which the latest b utterances

Xn−b+1, · · · , Xn (b > 1) are kept in a buffer area, and b ex-

pectations z̄n−b+1,i, · · · , z̄n,i are updated for each utterance

input. In the experiments below, we investigate the effect of

increasing buffer size b.

3.2. Model selection

The algorithm in the previous subsection has been described

on the assumption that the number of speakers (clusters) N
is known, but this is generally unknown in practical speaker

clustering problems. In online cases, in particular, N is likely

to change dynamically, starting from N = 1, and online esti-

mation of the number of clusters is an essential problem.

With our proposed method, the hyper-parameter reestima-

tion algorithm (3)–(4) is executed twice for each input utter-

ance, first on the assumption that the number of clusters in the

current observation is equal to that in the previous observation

N , and next that it is equal to N +1 (Fig. 2). Model selection

is conducted to select either N or N + 1 on the basis of the

following hypothesis test:

log P (N + 1 | Xn) − log P (N | Xn) > T, (5)

where P (N | Xn) is a Bayesian posterior probability with

respect to the number of clusters. This probability can be cal-

culated on the basis of the VB framework. That is, if Eq. (5)

holds, then the hypothesis N + 1 is selected. T is a threshold

value that has to be manually tuned beforehand on the basis

of data used in its original development.

4. EXPERIMENTS

4.1. Experimental setup

We used a total of two hours of broadcast audio data (22 kHz,

16 bit PCM) from committee meetings of a Japanese govern-

mental assembly and involving a total of 30 speakers. We

applied simple VAD (voice activity detection) and acoustic

analysis to the audio data and obtained 3,084 utterances (se-

quences of 12-dimentional MFCC feature vectors). The aver-

age duration of utterances was 1.90, and ranged from 0.24 to

10.86 seconds. We divided these utterances into six subsets,

E-step

M-step

nX

-state

E-step

M-step

+1-state

Model Selector

N      N or

N N

 +1

Fig. 2. Model selection for determining number of clusters

each of which contained 514 utterances given by 6–10 speak-

ers for the purpose of performing the leave-one-out evaluation

described below.

We employed an evaluation measure called the Rand In-

dex [4], which is commonly used in such data partitioning

problems. The Rand Index represents a kind of error rate and

is defined as the probability that two randomly selected utter-

ances assigned to different clusters are actually from the same

speaker, or that they are from different speakers but have been

assigned to the same cluster.

In our experimental setup, we used a conventional method

called leader-follower clustering (LFC) [3], which is a generic

approach to online clustering and deterministically classifies

utterances according to an arbitrarily defined similarity mea-

sure. Here, we defined a similarity measure between each in-

put utterance and existing clusters on the basis of the Bayesian

information criterion (BIC) [1], where each cluster was as-

sumed to be Gaussian. Since such a BIC-based measure con-

tains a threshold value like the T in Eq. (5), LFC makes re-

peated determinations on the basis of the sign of the measure

as to whether to merge the input utterance with the closest

existing cluster or to create a new cluster.

4.2. Experimental results

First, we investigated the relationship between the Rand In-

dex and the number of clusters by varying threshold value

settings. We also tried three buffer sizes b = 1, 2, 4 for the

proposed method. Results show that, for any number of clus-

ters, the proposed method with the basic setting (b = 1) yields

better performance than LFC does (see “Conventional” and

“Proposed(1)” in Fig. 3). We also found that the proposed

method shows still higher performance when buffer size b is

increased to 2 or 4 (see “Proposed(2)” and “Proposed(4)”).

Notably, when the number of clusters is comparable to the

true number of speakers (# of cluster / # of speakers ≈ 1),

our method with b = 4 produces 75% fewer errors than LFC

does.

We also conducted experiments under the more practical

condition that the threshold value T was fixed after being
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Fig. 3. Rand Index vs. number of clusters normalized with

the true number of speakers.

tuned on the basis of data used in its development. To do

this, we divided the six subsets of utterances into two groups.

Specifically, we selected one subset for testing, and the rest

were kept as development data for tuning the threshold value.

All the subsets were rotated between test and development

data (i.e., we performed a leave-one-out evaluation). Here we

tuned the threshold value so that the total number of clusters

would be as close as possible to that of the speakers.

Table 1. Leave-one-out evaluation for speaker clustering and

estimation of the number of clusters.

Av. Rand # of clusters/

Index (%) # of speakers

Conventional 38.1 47 / 47

Proposed(1) 27.4 45 / 47

Proposed(2) 24.6 48 / 47

Proposed(4) 8.07 50 / 47

Batch 9.61 45 / 47

Table 1 shows results for average Rand Index and for esti-

mation accuracy with respect to the number of clusters. It also

shows results for the batch version of the proposed method.

As may be seen, the proposed method outperforms the con-

ventional method in clustering accuracy, and still better per-

formance can be obtained with it by increasing buffer size b.

We may also note that, somewhat unexpectedly, b = 4 with

the proposed method yields performance that is comparable

to or better than that with the batch approach, even though the

latter has, from the very beginning of the clustering process,

access to full information about the input utterances. Estima-

tion of the number of clusters seems to work well enough, on

average, with both the conventional and proposed methods.

5. SUMMARY AND FUTURE WORK

In this paper, we have proposed a novel online algorithm for

speaker clustering that was formulated by applying a varia-

tional Bayesian incremental learning technique to a genera-

tive model of speech utterances from multiple speakers. The

effectiveness of the proposed method has been demonstrated

in a series of experiments using actual recorded-meeting au-

dio data. Notably, the proposed method was found to be able

to achieve still higher accuracy when buffer size b was in-

creased.

Issues for the future include confirming the validity of the

proposed method through its testing on evaluation measures

other than the Rand Index, such as cluster/speaker purity.

Also, further improvements in accuracy might be obtained by

using prior knowledge, such as large-scale speaker databases.

We would also like to investigate performance when our algo-

rithm is implemented on LVCSR systems, where the accuracy

of its speaker clustering might be expected to make the online

speaker adaptation process work more effectively.
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