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ABSTRACT

In this paper, we propose two cluster criterion functions
which aim to maximize the separation between intra-cluster
distances and inter-cluster distances. These criteria can au-
tomatically deduce the desired number of clusters based on
their extremized values. We then propose an algorithm to
apply our criterion functions in conjunction with spectral
clustering. By exploiting the characteristic of spectral sub-
space,we show that the speakers are more separable in this
subspace which will further enhance the effectiveness of our
proposed criteria. The algorithm is used in our agglomera-
tive hierarchical speaker diarization system to test on Rich
Transcription 2007 conference data set and obtains very good
results.

Index Terms— speaker diarization, criterion function,
spectral clustering

1. INTRODUCTION

Clustering is the procedure to group data points into clusters
such that the data points in the same cluster possess strong
internal similarities. Generally, there are two major issues
in clustering: determining number of clusters (cluster valid-
ity) and finding optimal partitioning (cluster criteria). Thus
far, these two issues are handled separately with different
criteria e.g. the sum-of-squared-error criterion cannot be
used for cluster validity because it is monotonic decreasing
with increasing number of clusters. In this paper, we pro-
pose two cluster criterion functions when extremized could
concurrently solve both issues. These functions have a sim-
ple interpretation that they aim to maximize the separation
between intra-cluster distances and inter-cluster distances.
Recently, spectral clustering methods get much attention

because of their ability to handle many difficult clustering
problems. However, not much has been investigated for
speaker clustering within this framework. In this paper, we
introduce an algorithm using our proposed criterion functions
in spectral subspace and provide a mathematical analysis to

this algorithm in the ideal case. Furthermore, we also show
in the experiment that the speakers are more separable in the
spectral subspace which is a desirable property for clustering.
We then demonstrate the use of this algorithm in our agglom-
erative hierarchical speaker diarization system to estimate
number of speakers. This approach has advantage compared
to those using thresholds derived from development set to
determine number of speakers [1, 2, 3] because it does not
suffer from mismatch issues between development data and
test data. Ajmera [4] proposed a system using a modified
version of BIC. This system performs well in terms of having
low diarization error rate (DER) and not requiring develop-
ment data, however it usually generates many small clusters
(which does not have much impact on DER) thus provides
wrong number of speakers.
The paper is organized as follow: first we introduce two

criterion functions in section 2, and then in section 3, we
apply these functions in spectral subspace and provide de-
tail analysis. We finally report some experimental results on
speaker clustering using the proposed algorithm in section 4.

2. CLUSTERING CRITERION FUNCTIONS

Given a set of point S = {s1, s2, . . . , sn} of n samples that
we want to partition into c disjoint subsets S1, . . . , Sc. Let
d (si, sj) be the similarity function between two points si and
sj . Define:

Dintra = {d (si, sj) |∀i, j ∃k : si ∈ Sk, sj ∈ Sk}
Dinter = {d (si, sj) |∀i, j ∃k �= l : si ∈ Sk, sj ∈ Sl}

We propose two criterion functions to measure the quality of
partitioning.

2.1. Ts criterion

Letm1, σ1, n1,m2, σ2, n2 be respectively the mean, standard
deviation, size of Dintra and Dinter.
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Ts (Dintra, Dinter) =
|m2 − m1|√

σ2

1

n1

+
σ2

2

n2

(1)

The interpretation of this criterion function: Ts measures
the difference between the mean distance among points in the
same clusters and the mean distance among points across dif-
ferent clusters taking into account the variance of these dis-
tances. The optimal partitioning is defined as one that maxi-
mizes Ts.

2.2. ρ criterion

This criterion function is based on Mann-Whitney U test [5].
First, we sort the value ofD = {Dintra ∪ Dinter} in ascend-
ing order and assign a ranking order for each element of D.

R1 =
∑

xi∈Dintra

rank(xi)

U1 = R1 − ||Dintra||(||Dinter|| + 1)

2

ρ =

∣∣∣∣ U1

||Dintra||.||Dinter|| − 0.5

∣∣∣∣ × 2 (2)

where rank(xi) is the order of xi in the sorted sequence of
D, ||.|| is the cardinal of the set. ρ can take values between 0
and 1.A ρ of 0 represents complete overlap while a value of
1 represent complete separation. This criterion function has a
simple interpretation: ρ measures the overlap between the set
of distances among points in the same clusters and the set of
distances among points across different clusters based on the
ranking order of these distances, the actual values of distances
are not important. The optimal partitioning is defined as one
that maximizes ρ.

3. SPECTRAL SUBSPACE AND CLUSTERING
CRITERION FUNCTIONS

In this section, we propose an algorithm to measure cluster-
ing quality using the above mentioned functions in spectral
subspace.

3.1. Algorithm

Given a set of point S = {s1, s2, . . . , sn} of n samples that
we want to partition into c disjoint subsets S1, . . . , Sc. Let
d (si, sj) be the similarity function between two points si and
sj .

1. Form the affinity matrix A ∈ Rn×n defined by

Aij = exp

(−d2 (si, sj)

σiσj

)
(3)

where σi = d (si, sK) is the distance from point si to
itsK’th neighbor. In all our experiments, a single value
ofK = 7 is used as suggested in [6].

2. Define D to be a diagonal matrix with D (i, i) =∑N
j=1 Aij and construct the normalized affinity matrix

L = D−1/2AD−1/2.

3. Find x1, x2, . . . , xc, the c largest eigenvectors of L

(largest eigenvectors are those corresponding to largest
eigenvalues), and form the matrixX = [x1x2 . . . xc] ∈
Rn×c.

4. Renormalize X to obtain matrix Y such that Yij =
Xij√∑
n
j=1

X2

ij

.

5. Form the matrixZ ∈ Rn×n in which each element ofZ
is the cosine distance between rows i, j of Y : Z (i, j) =∑n

k=1 YikYjk.

6. Define Dintra and Dinter respectively as the set of
intra-cluster distances and inter-cluster distances

Dintra = {Z (i, j) |∀i, j ∃k : si ∈ Sk, sj ∈ Sk}

Dinter = {Z (i, j) |∀i, j ∃k �= l : si ∈ Sk, sj ∈ Sl}
Now, we can compute the partitioning quality with ei-
ther formula (1) or formula (2).

3.2. Analysis

This section will provide an analytical analysis of our algo-
rithm in the ideal case where Aij = 0 if si and sj are in dif-
ferent clusters and Aij > 0 otherwise. In other word, the
points in different clusters are assumed to be infinitely far
apart. Without loss of generality, we suppose that there are
c = 3 actual clusters for ease of discussion. The matrix A

and matrix L are block-diagonal matrices:

L =

⎛
⎝ L(1) 0 0

0 L(2) 0
0 0 L(3)

⎞
⎠

where L(k) is the sub-matrix corresponding to cluster Sk.

3.2.1. The actual number of clusters is known

In this case

X =

⎛
⎝ x(1) 0 0

0 x(2) 0
0 0 x(3)

⎞
⎠

where x(k) is an eigenvector of the sub-matrix L(k) (please
refer to [6, 7] for detail derivations). When we renormalize
each of X’s rows to have unit length, we obtain:

Y =

⎛
⎝

�1 0 0

0 �1 0

0 0 �1

⎞
⎠
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When each point si belongs to its true cluster, we have:
Dintra contains all 1s and Dinter contains all 0s. Thus,
Ts = +∞ and ρ = 1. In all other cases where there is at least
one point in a wrong cluster, Dintra and Dinter both contain
some 0s and some 1s which will lead to Ts < +∞ and ρ < 1.

3.2.2. The estimated number of clusters is less than the ac-
tual number of clusters

Supposed c′ = 2 largest eigenvectors are selected.

Y ′ =

⎛
⎝

�1 0

0 �1
0 0

⎞
⎠

In this case, Dintra contains some 0s and some 1s no matter
what how we cluster the data into 2 clusters. Hence, Ts <

+∞ and ρ < 1.

3.2.3. The estimated number of clusters is more than the ac-
tual number of clusters

Supposed c′′ = 4 largest eigenvectors are selected.

Y ′′ =

⎛
⎝ �a 0 0 �b

0 �1 0 0

0 0 �1 0

⎞
⎠

where �a, �b are two eigenvectors from the same sub-matrix,
�a ·�b = 0 and at least one of them is strictly positive [7]. No
matter what how we cluster the data into 4 clusters, Dintra

has some 1s and some less than 1s, Dinter has some 0s and
some greater than 0s. Thus, Ts < +∞ but we cannot con-
clude about the value of ρ in this case although in practice it
works well as shown later in the experiments.

4. EXPERIMENTS IN SPEAKER CLUSTERING

4.1. Similarity measure between two segments

In all our experiments, we used Td as the similarity measure
between two segments (clusters). Define:

f1(x) = logL(x|λ1) − logL(x|λUBM )

f2(x) = logL(x|λ2) − logL(x|λUBM )

S1 = {f1(x)|∀x ∈ X1} ∪ {f2(x)|∀x ∈ X2}
S2 = {f1(x)|∀x ∈ X2} ∪ {f2(x)|∀x ∈ X1}

where X1, X2 are the sets of feature vectors from two
segments;λ1, λ2 are the models estimated from X1, X2;
λUBM is the universal background model. Let m1, m2,
σ1, σ2, n1, n2 are respectively the mean, standard deviation,
size of S1 and S2:

Td =
|m1 − m2|√

σ2

1

n1

+
σ2

2

n2

(4)

Note that although Ts and Td have the same formula but they
are contextually different. Ts is used as the stopping crite-
rion; it is applied on the sets of intra-cluster and inter-cluster
distances. Td is used as the metric to determine which two
closest clusters should be merged in hierrachical clustering; it
is applied on the sets of frame log-likelihood scores.

4.2. Why spectral subspace?

For many problems in other domains [6, 7], the data points
when mapped to spectral subspace will form tight groups and
the groups are well separated which is a desirable characteris-
tic for clustering. This experiment was carried out to answer
the question whether the mapping can be applied for speaker
clustering?
We extract 48 speakers from NIST Speaker Recognition

2004 in which 34 of them are females. Each speaker con-
sists of several segments of 20 seconds audio data. We ran-
domly select 4 − 10 speakers from this group and compute
the distances between every pair of speaker segments to form
Dintra, Dinter in the original space as described in section 2
or in the spectral subspace as in section 3.1. The separation
between Dintra and Dinter is then computed using Ts, ρ or
equal error rate (EER) [8]. These procedures are repeated 100
times and the results are averaged and recorded in Table 1.

Table 1. Separation between Dintra and Dinter.

Ts ρ EER(%)

Original space 60.66 0.9851 2.74
Spectral subspace 607.22 0.9968 0.49

The obtained results have clear indications that the speak-
ers are more separable in the spectral subspace, .

4.3. Agglomerative hierarchical speaker diarization

We demonstrate the use of the proposed algorithm in our ag-
glomerative hierarchical speaker diarization system. Suppose
from the system, we obtain C(p), C(p−1), . . . , C(2) where
C(k) = {S1, . . . , Sk} is a partitioning of data into k disjoint
clusters. To determine the desired number of clusters, we
measure the partitioning quality of C(k) and select the value
of k which maximizes the quality. The procedure to compute
the quality of C(k) is summarized as follow:

1. For each cluster Si from C(k), Si is divided uni-
formly into ni segments of 10 seconds each: Si =
{si1, . . . , sini

}. In total, there are n = n1 + . . . + nk

segments.

2. Construct an affinity matrix A ∈ Rn×n as (3) using Td

as the distance metric between each pair of segments.

3. Follow the steps described in section (3.1) to compute
the partitioning quality.
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The system was tested on Rich Transcription (RT) 2007 con-
ference data released by NIST for RT07 benchmark on the
single distance microphone condition. The experimental re-
sults are reported in Table 2 with three evaluation criteria: di-
arization error rate (DER) [9], miss speakers and false alarm
(FA) speakers. We also evaluate the alignment cost function
J [6] to estimate the number of clusters.

Table 2. Results of speaker diarization system.

Criterion DER Miss FA
Function (%) speaker speaker

ρ 18.22 4 1
Ts 19.99 6 1
J 25.00 9 1

In Figure 1, the proposed criterion functions are com-
pared with Bayesian Information Criterion (BIC) and merg-
ing threshold. The experimental result shows that for this
database: Ts is comparable with the best threshold and best
possible value of λwhile ρ is better than all other methods and
it is approaching the optimal stopping criterion of our speaker
diarizaton system. The optimal stopping criterion is the one
that produces lowest diarization error rate (no other stopping
criterion could be better than this limit).
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Fig. 1. DER with BIC and threshold as the stopping criterion

5. CONCLUSION

We have proposed two clustering criterion functions to mea-
sure partitioning quality as well as determine number of
speakers. These functions are applied in spectral clustering
framework and incorporated into our agglomerative speaker
diarization system. The system performs very well on RT
2007 dataset when compared with state-of-the-art systems
[10]. We have also shown that the speakers are more separa-
ble in spectral subspace.
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