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ABSTRACT

In this paper, we present an approach, called FREQDIST, for speaker
segmentation based on a distance measurement applied in the fre-
quency domain. To enhance the detection performance, the spectrum
is reweighted using normalization techniques. Additionally, noise-
like (i.e. flat) spectra are removed based on the entropy. Experi-
ments using the TIMIT database [1] and Westdeutscher Rundfunk
broadcast data show that our segmentation approach yields a good
performance compared to the DISTBIC algorithm [2]. In particular,
for the TIMIT data our algorithm reaches a false alarm rate (FAR)
less than half of the value of the DISTBIC algorithm and a missed
detection rate (MDR) of 7.0% instead of 13.1%.

Index Terms— Speaker turn detection, DISTBIC, FREQDIST.

1. INTRODUCTION

Speaker segmentation in audio data is a common task in today’s
speech processing. In fact, it is rather a preparatory step preceding
algorithms that need single-speaker segments, e.g. to sort different
speakers. Nevertheless, speaker segmentation is not a trivial problem
especially if no a priori information is given for the speakers.

In general, speaker segmentation algorithms can be divided into
three main approaches [3]: Silence-based methods, model-based
methods, and metric-based methods. Silence-based methods de-
tect a speaker turn (i.e. change of the speaker) if a silent area is
present in the speech signal. However, silent segments do not imply
a speaker change which results in a degraded performance. Model-
based methods classify the data stream with the help of models, e.g.
gaussian mixture models. Unfortunately, these models have to be
trained before applying. Often no training data is available or at
least not for all speakers. For these reasons, metric-based methods
are widely-used [3, 4]. Those approaches measure distances between
extracted features. The features of two adjacent windows which are
moved over the audio stream are compared and classified as speaker
turns or non-speaker turns. Many metric-based speaker segmenta-
tion approaches are based on cepstral domain features.

In this paper, a metric-based approach, called FREQDIST, is
presented using frequency domain features. These features are
derived by reweighting the spectrogram using normalization tech-
niques. FREQDIST is based on the assumption that the high fre-
quency spectral components stay rather constant as long as no
speaker turn occurs [5]. The results of FREQDIST are com-
pared to the DISTBIC algorithm introduced in [2] using the TIMIT
database [1] and indexed Westdeutscher Rundfunk broadcast data.

The paper is organized as follows: Section 2 introduces our ap-
proach. The experimental setup is shown in section 3. The results are
presented and discussed in section 4 and section 5. Finally, section
6 concludes the paper.

2. FREQDIST ALGORITHM

Similar to other metric-based speaker segmentation approaches, the
proposed method consists of the following parts: Speaker specific
properties are extracted from the input signal (feature extraction).
Then, the similarity between neighboring windows of these features
is determined (distance measurement) and finally, those segments
with high distance values are detected and declared to be speaker
turns (classification).

2.1. Feature Extraction

The features used for speaker segmentation are essential for its per-
formance. They should carry information that enables the segmenta-
tion approach to distinguish between different speakers. To be able
to correctly detect speaker turns, the features should vary as little
as possible as long as no speaker turn occurs. And the other way
round, if a speaker turn occurs, the features should vary as much as
possible.

A good basis for feature extraction are the speech formants.
They carry information about the current shape of the vocal tract.
Since every speaker’s vocal tract has a unique shape, the formants
are speaker dependent and thus should provide sufficient informa-
tion to detect a speaker change.

Formants vary as the vocal tract of the speaker changes. Vow-
els have characteristic formant frequencies. The first, the second,
and sometimes even the third formant frequency (the lowest reso-
nance frequency is the first formant frequency) do not change much
for different speakers but they do change depending on the articu-
lated vowel [5]. Thus the first two to three formants are good fea-
tures for speech recognition as they characterize the spoken phone
but they might not be suitable for speaker segmentation. The same
assumptions are true for gliding sounds and liquids. Unfortunately,
the Mel frequency cepstral coefficients (MFCC) that are often used
in speaker segmentation are computed considering all available spec-
tral components - including the “speaker-independent” formants.

For this reason, the suggested segmentation algorithm performs
a reweighting of the spectrum by normalization techniques to em-
phasize high frequency components. The fourth (sometimes the
third) and higher formants are assumed to be more speaker-specific,
i.e., they do not change much as long as the speaker does not change
[5]. This property seems to come from the length differences of
the vocal tract between speakers which influence mostly the higher
order formants. Furthermore, the higher order formant frequencies
provide a high interspeaker variability which supports the detection
of speaker turns. Hence, these formants provide a good basis for
features in speaker segmentation (see [6]). But they require access
to the spectral components of 3 kHz and above. The speech signal
has to be sampled with rates of about 16 kHz and higher to extract
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features from 3 to 8 kHz.

To extract these features, the speech signal is transformed into
the frequency domain using the short time Fourier transform: A win-
dow of 20 ms is moved stepwise (10 ms) over the signal. For each
step the discrete Fourier transform Xi[k] of the windowed signal
(here, a Hamming window is used) is computed, where i is the time
index and k the frequency bin.

We suggest two normalization techniques to reweight the spec-
trum: In general, most of the energy of speech signals is contained in
the low frequency part. To remove this general correlation between
frequency and energy, all frequency bins of the spectrogram are nor-
malized over time (i.e. the mean magnitude of the frequency bins is
equalized):

Xnorm time,i [k] =
1

1
N

PN
j=1 |Xj [k]| |Xi[k]|, (1)

where |Xi[k]| denotes the magnitude spectrum and N is the num-
ber of extracted spectra. This normalization does not only adjust the
energy among the spectral components but also makes the standard
deviation of them comparable. This property comes from the fact
that spectral components with large average energy have also higher
variances. Thus equalizing the mean energy also adjusts the stan-
dard deviations. However, there is a need for a second normalization
step: The energy of the spectrum varies strongly over time even if no
speaker turn occurs. Normalizing the sum of all spectral components
to 1 for every spectrum according to

Xnorm freq,i [k] =
1PK

l=1 Xnorm time,i[l]
Xnorm time,i[k] (2)

is usefull, where K is the number of frequency bins. This normal-
ization is performed for each spectrum (for more information on the
effect of the normalization steps see [7]).

After these normalization steps, the high frequency bins are still
not very distinctive between different speakers. It turns out, that the
reason for this are the unvoiced parts of the speech signal. These
components have a flat spectrum and are similar for all speakers.
Hence, they do not carry discriminative information for speaker
segmentation. We use the entropy of the spectrogram to remove
the unvoiced speech segments before performing the normalizations
(Eqn. 1 and Eqn. 2).

After normalizing the energy of every magnitude spectrum to 1,
we can treat it as probability density function (p.d.f.). If the spec-
trum is noise-like, the p.d.f. is flat and thus the entropy is large.
Information entropy is defined as follows ([8]):

H(Xi) = −
KX

k=1

p(Xi[k]) · log2(p(Xi[k])), (3)

where K is the number of possible values of the discrete random
variable Xi and p(Xi[k]) is the probability of Xi[k]. By removing
the spectra which have high entropy values, the non-flat parts remain
in the data which are mostly the parts including the voiced speech
information. The number of removed spectra is derived from the
average entropy HAvg of all spectra of the audio stream multiplied
by a factor hec. If HAvg ·hec < H(Xi) then spectra Xi is removed,
otherwise it is used for further processing.

After the removal of the high entropy spectra and the two nor-
malization steps, the high frequency speaker dependent components
of 3 kHz and above are extracted for applying the distance metric.

2.2. Distance Measurement

The distance measurement has to detect those points that indi-
cate a speaker turn. Prior to the distance measurement, the data
Xnorm freq,i [k] are smoothed in time-direction using a moving av-
erage filter. Then, two adjacent windows A and B are moved step-
wise over the features Xnorm freq,i [k]. The Euclidian distance be-
tween the features within the windows is computed after every step

dEucl(X̄A[k], X̄B [k]) =

 
KX

k=1

˛̨
X̄A[k] − X̄B [k]

˛̨2!1/2

, (4)

where X̄A[k] is the mean of the kth frequency bin of window A and
X̄B [k] the mean of the kth bin of window B.

2.3. Classification

To reduce the number of local maxima, the results of the Euclidean
distance measurement are smoothed with the help of a moving av-
erage filter. Afterwards, the decision procedure has to determine
whether a local distance maximum belongs to a speaker turn or not.
Here, the same approach is used as suggested in [2]. The decision
depends on the differences of the considered local maximum and the
two minima at its left and right side as

| dmax
Eucl − dminr

Eucl | > ασ (5)

and

| dmax
Eucl − d

minl
Eucl | > ασ, (6)

where dEucl denotes the Euclidean distance, dmax
Eucl the considered

local distance maximum, dminr
Eucl the local minimum at the right of

dmax
Eucl and d

minl
Eucl the local minimum at its left. Parameter α can

be adapted depending on the input speech data to optimize the seg-
mentation performance and σ denotes the standard deviation of the
Euclidean distance measure for the speech utterance. If equation 5
and 6 are true for a local maximum, the position of this maximum is
declared to be a speaker turn.

3. EXPERIMENTAL SETUP

We compare the performance of the FREQDIST algorithm to the
DISTBIC algorithm introduced in [2]. Therefore, we use two differ-
ent data sets:

1. The TIMIT database [1] contains a total of 6300 sentences,
10 sentences spoken by each of 630 speakers from 8 major
dialect regions of the United States. The sampling rate is
16 kHz. The shortest speech segment is about 2.5 seconds.

2. Presseclub: The Presseclub data is a collection of broadcasts
of the talkshow Presseclub of the German Westdeutschen
Rundfunk WDR. Five broadcasts of about 45 minutes each
were recorded and the speaker turns were labelled. The sam-
pling rate is 22.05 kHz. On average, the speech segments are
much longer compared to TIMIT.

To achieve the best performance, parameters have to be opti-
mized. The two algorithms have some different and some common
parameters. For the computations of the spectrogram, the algorithms
use a window length of 20 ms and a step size of 10 ms. The other pa-
rameters are listed below.
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• Window size (win) used for DISTBIC and FREQDIST: The
window size defines the width of one of the two windows that
are moved stepwise over the extracted feature vectors (i.e it
determines the number of feature vectors).

• Step size used for DISTBIC and FREQDIST: The step size
of the two windows is always 0.1 seconds.

• Smoothing coefficient (sc) used for DISTBIC and FRE-
QDIST: This coefficient defines the degree of smoothing of
the distance function.

• α used for DISTBIC and FREQDIST: This parameter is used
within the maximum detector introduced in section 2.3.

• λ used for DISTBIC: This parameter is used as a balance
operator for the Bayesian Information Criterion (see [2]).

• Spectrogram smoothing coefficient (sc spec) used for FRE-
QDIST: This parameter determines the size of the moving av-
erage filter introduced in 2.2.

• High-entropy cutting (hec) used for FREQDIST: This
threshold parameter influences the entropy-based spectro-
gram segmentation introduced in section 2.1.

The performance measurement is performed with the help of the
false alarm rate (FAR)

FAR = 100×
number of false accepted turns

number of all speaker turns + number of false accepted turns
%

(7)

and the missed detection rate (MDR)

MDR = 100 × number of missed speaker turns

number of all speaker turns
%. (8)

To determine the values of these rates, the area of acceptance
(AOA) has to be defined. The area of acceptance is the area around
a real speaker turn where an estimated turn is accepted to be a real
turn. Because of the differences of the average speaking duration
per speaker, this parameter is set to different values for different
databases.

4. RESULTS: TIMIT

Table 1 shows the FAR and MDR of the FREQDIST and the DIS-
TBIC algorithm using 200 speaker turns. The test data consisted
of randomly chosen speakers. Each speaker speaks 3 concatenated
sentences of altogether 7.5 seconds on average. The performance
of both algorithms was measured using parameter sets optimized for
data of 7.5 seconds average speaking duration per speaker. Table 2
shows the parameters.

Table 1: FAR and MDR of DISTBIC and FREQDIST using 7.5
seconds TIMIT data and 200 speaker turns.

AOA (s) FAR (%) MDR (%)
DISTBIC 0.5 17.1 19.6

1.0 10.4 13.1
FREQDIST 0.5 14.4 16.1

1.0 5.1 7.0

Table 2: Optimized parameter values for TIMIT data.

win α λ sc sc spec hec
DISTBIC 6 60 1 2 - -
FREQDIST 5 20 - 2 20 1.1

Table 3: FAR and MDR of DISTBIC and FREQDIST using TIMIT
data with added noise and 200 speaker turns.

SNR (dB) FAR (%) MDR (%)
DISTBIC 10 21.89 21.11

20 16.26 14.57
40 12.37 14.57
60 10.36 13.07
80 10.36 13.07
100 10.36 13.07

FREQDIST 10 52.6 17.59
20 30.21 17.59
40 6.03 6.03
60 4.62 6.53
80 5.12 7.04
100 5.13 7.04

The results show that both algorithms work well with this data
set. The FAR and the MDR reach values of far below 20%. The
FREQDIST algorithm performs better than the DISTBIC algorithm.
The FREQDIST algorithm reaches a FAR less than half of the value
of the optimized DISTBIC algorithm and a MDR of 7.0% instead of
13.1%.

In the next experiment, we study the behavior of the algorithms’
dependency on the average speaking duration. We change the dura-
tion from 2.5 seconds (i.e. one sentence of the TIMIT database) to 20
seconds on average (i.e. 8 concatenated sentences). Again, we use
200 randomly selected speakers. The parameters of the algorithms
are set to the same optimized parameters as before. In this case both
algorithms perform quite similar (see figure 1a and 1b). For longer
speaking durations than 7.5 seconds, the MDR stays nearly constant
but the FAR increases to 50% for 20 seconds. For smaller durations,
the FAR does not exceed 20% but the MDR can be as large as 65%.
Unfortunately, the strong influence of the average speaking duration
on the performance makes a reliable application of the algorithms in
a real-world scenario questionable. To get good performance results,
the parameters - especially the window size - needs to be adapted de-
pending on the speaking duration. But without a priori information
on the data, this adaptation is not possible.

Finally, table 3 shows the segmentation performance measured
with added white Gaussian noise. For this experiment, the AOA is
set to 1 second. Again, the parameters are set to the values of table 2.
Adding noise does not influence the algorithms’ performance as long
as the signal to noise ratio (SNR) is higher than 20dB. If the SNR
is smaller, the performance of the FREQDIST algorithm degrades.
The FREQDIST algorithm responds sensitive on changes in the high
frequency parts of the spectrum. In real-world data these spectral
components are prone to be polluted by background noise or changes
of the head-microphone position.
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Fig. 1: FAR (a) and MDR (b) of the DISTBIC and the FREQDIST
algorithm for different average speaking durations (AOA = 1s).

5. RESULTS: PRESSECLUB

Table 4 and 5 present the FAR and the MDR of the DISTBIC and
the FREQDIST algorithm using two different Presseclub broadcasts.
Here, the speaking durations are changing continually. High FARs of
between 40% and 60% and MDRs of between 55% and 60% are not
remarkable. The results using the Presseclub data show the effect of
the inflexible behavior of both algorithms. The results are achieved
by setting the parameters to the optimized values shown in table 6.

6. CONCLUSION

A new approach to speaker segmentation in the frequency domain
is presented. It reweights the spectrum using normalization tech-
niques. Additionally, noise-like spectra are removed based on the
entropy. For the TIMIT corpus we achieve better performance com-
pared to the DISTBIC algorithm. Our method even works well
at low noise levels. For Westdeutscher Rundfunk real-world data
the FREQDIST algorithm performs slightly better. These results
show that higher frequency components are an interesting and useful

Table 4: FAR and MDR of DISTBIC and FREQDIST using Presse-
club data: Broadcast 1.

AOA (s) FAR (%) MDR (%)
DISTBIC 2 57.7 61.4
FREQDIST 2 42.9 57.9

Table 5: FAR and MDR of DISTBIC and FREQDIST using Presse-
club data: Broadcast 2.

AOA (s) FAR (%) MDR (%)
DISTBIC 2 60.4 55.3
FREQDIST 2 50.0 55.3

Table 6: Optimized parameter values for Presseclub data.

win α λ sc sc spec hec
DISTBIC 8 120 1 2 - -
FREQDIST 6 150 - 2 150 1.1

source of speaker dependent features that can be used to enhance the
performance of speaker related algorithms.

7. REFERENCES

[1] L. Lamel, R. Kassel, and S. Seneff, “Speech database develop-
ment: Design and analysis of the acoustic-phonetic corpus,” in
Proceedings of the DARPA Speech Recognition Workshop, Re-
port No. SAIC-86/1546, 1986.

[2] P. Delacourt and C.J. Wellekens, “DISTBIC: A speaker-based
segmentation for audio data indexing,” Speech Communication,
vol. 32, pp. 111–126, 2000.
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