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ABSTRACT

This work aims to take advantage of recent developments in Joint
Factor Analysis (JFA) in the context of a phonetically conditioned
GMM speaker verification system. Previous work has shown per-
formance advantages through phonetic conditioning, but this has not
been shown to date with the JFA framework. Our focus is partic-
ularly on strategies for combining the phone-conditioned systems.
We show that the classic fusion of the scores is suboptimal when
using multiple GMM systems. We investigate several combination
strategies in the model space, and demonstrate improvement over
score-level combination as well as over a non-phonetic baseline sys-
tem. This work was conducted during the 2008 CLSP Workshop at
Johns Hopkins University.

Index Terms— joint factor analysis, robust speaker ID, phonetic
GMM, JHU workshop.

1. INTRODUCTION

Modeling variability in the model space is a major focus of the
speaker recognition community. This work has shown to be par-
ticularly useful for channel compensation of speaker models. One
of the most developed frameworks tackling this problem is Joint
Factor Analysis (JFA), introduced by Patrick Kenny in [1]. This
framework aims at factoring out two components for an utterance:
the speaker and the nuisance component (usually called channel or
session variability). The latter is commonly removed for training a
speaker model.

This work aims to take advantage of developments in JFA in the
context of a phonetically conditioned system. Previous work with
phonetic systems has shown the ability to extract additional perfor-
mance through phonetic conditioning [2, 3], although this advantage
was not observed for a full factor analysis model.

The particular focus of this work is to investigate strategies for
combining each of the phone-conditioned JFA systems. Our hypoth-
esis is that score level combination is suboptimal and does not fully
realize the potential advantages of a conditioned JFA system. Op-
tions for model-level combination are presented and compared.

We term the model combination strategies as supervector con-
catenation and subspace stacking, both illustrated in Figure 1. The
motivation behind the supervector concatenation approach is to si-
multaneously present all the phone-conditioned statistics to the JFA
model so that correlations and relationships between the phonetic
conditions, as well as the differences, can be observed and modeled.
This approach results in an increase in the dimension of the speaker
model mean by a factor of the number of phonetic classes with no
increase in the latent variable dimension.

Alternatively, the subspace stacking approach combines sub-
space transforms from each phonetic context resulting in an in-
creased dimension of the speaker, channel or both latent variables.

It is hypothesized that this approach provides the flexibility for the
observed data to select the most relevant subspace dimensions and
has previously proven useful in the auxiliary microphone conditions
of recent NIST SREs [4].

While the focus of this work is on phone-conditioned JFA sys-
tems, the implications may reach beyond this scope. We expect that
investigating several possibilities using phonetic-events will lead to
a better understanding of the JFA model and a methodology that can
be applied to increase robustness to other kinds of conditions such
as language, gender and microphone types.
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Fig. 1. Stacked vs. concatenated eigenvectors for 2 phonetic classes.
The former enrich the model by projecting statistics on both classes,
thus increasing the rank. The latter produces a more robust latent
variable by tying the classes together, thus increasing the model size.

2. SYSTEMS AND PROTOCOL

We describe the JFA framework, as well as the system and the pho-
netic decoder used for the experiments, before presenting the exper-
imental protocol.

2.1. Joint Factor Analysis

Let us define the notations that will be used throughout this dis-
cussion. The JFA framework uses the distribution of an underlying
GMM, the universal background model (UBM) of mean m0 and di-
agonal covariance Σ0. Let the number of Gaussians of this model be
N and the feature dimension in each Gaussian be F . A supervector
is a vector of the concatenation of the means of a GMM: its dimen-
sion is NF . The speaker component of the JFA model is a factor
analysis model on the speaker GMM supervector. It is composed of
a set of eigenvoices and a diagonal model. Precisely, the supervector
ms of a speaker s is governed by,

ms = m0 + V y + Dz (1)

where V is a tall matrix of dimension NF × RS , and is related
to the eigenvoices (or speaker loadings), which span a subspace of
low-rank RS . D is the diagonal matrix of the factor analysis model
of dimension NF × NF . Two latent variables y and z entirely
describe the speaker and are subjected to the prior N(0, 1). The
nuisance (or channel/session) supervector distribution also lies in a
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low-dimensional subspace of rank RC . The supervector for an utter-
ance h with speaker s is

mh = ms + Ux (2)

The matrix U , known as the eigenchannels (or channel load-
ings), has a dimension of NF × RC . The loadings U , V , D are
estimated from a sufficiently large dataset while the latent variables
x, y, z are estimated for each utterance.

2.2. Baseline System Description

The speaker recognition system from Brno University of Technology
(BUT) [5] is used for the experiments. The baseline system employs
a 512-Gaussian UBM. The features are warped Mel-frequency cep-
stral coefficients (MFCCs) composed of 19 cepstrum features and
one energy feature. First and second order derivatives are appended
for a total dimension of 60. The rank of the speaker space is 120
while the channel space rank is 60. A lower number of Gaussian as
well as lower subspace ranks were selected to accommodate for the
multiple phone classes.

To train the matrices, several iterations of the expectation maxi-
mization (EM) algorithm of the factor analysis framework are used.
An alternative minimum divergence estimation (MDE) is used at the
second iteration to scale the latent variables to a N(0, 1) distribu-
tion. To train a speaker model, the posteriors of x, y, z are computed
using a single iteration (via the Gauss-Seidel method as in [6]).

The verification score for each trial was a scalar product between
the speaker model mean offset and the channel compensated first or-
der Baum-Welch statistics centered around the UBM. This scalar
product was found to be simple yet very effective [7] and was sub-
sequently adopted by the JHU fast scoring group [8].

The speaker verification system is gender-independent with a
gender-dependent score normalization (ZT norm).

2.3. Phonetic Decoder

The phonetic decoder used for these experiments is an open-loop
Hungarian phone decoder from BUT, Brno [9]. The Hungarian lan-
guage possesses a large phone set and enables the modeling of more
nuances than an English set. This has been particularly useful in
language identification tasks. For this work, we chose to cluster the
phonemes into broader phonetic events. We used two different clus-
terings obtained in a supervised way by expertise:

• 2-class set: vowels (V), consonants (C)

• 4-class set: vowels (V), sibilants (Si), stops (St), non-vowels
(NV).

To build a phonetically conditioned system, for example a vowel
system, we first extract the feature vectors from an utterance corre-
sponding to the occurrences of vowels in the phone transcription to
obtain phone-conditioned Baum-Welch statistics for the utterance.
These statistics are used in exactly the same fashion as described
above to build a full JFA model with phone-conditioned speaker and
channel subspace matrices. The speaker and channel loadings will
be subscripted by the notation adopted for each event in Table 1 (for
instance, VV will be the speaker loading for the vowel set).

2.4. Experimental Protocol

All experiments were performed based on the all trials condition
from the NIST-SRE-2006 dataset. The data set consists of 3616
target trials and 47452 non-target trials. Results are given in terms
of equal error rate (EER) and minimum detection cost function

(mDCF) given by NIST.
The factor analysis model uses the following data sets for training:

• The UBM is trained on Switchboard and Mixer data. For
simplicity we fixed the UBM for all phonetic events.

• The eigenvoices and eigenchannels are trained in a gender-
independent fashion on the NIST SRE 04 data set, consisting
of 304 speakers and 4353 sessions. The diagonal model is
trained on 359 utterances coming from 57 speakers from SRE
04 and 05.

• The score normalization data (Z- and Tnorm) was drawn from
SRE 04 and 05 with around 300 utterances for each gender.

3. COMBINATION STRATEGIES

In this section, we evaluate the performance of the score-level com-
bination strategy for the phonetic-system. We will then investigate
techniques in the model space that will robustly estimate the speaker
by taking into account all phonetic classes.

3.1. Baseline and Score-level Fusion Results

Score-level combination is a frequently used technique for gaining
robustness on different conditions. For a phonetic GMM system, the
usual strategy is to have as many systems as the number of phonetic
events. The combination of information is done at the score level by
fusing the scores. In this experiment, an optimistic system combi-
nation is used, as the logistic regression is trained and tested on the
same data. The FoCal toolkit [10] is used for this process.

Table 1. Results for the baseline system, as well as for each phonetic
group are included. The results of fusions across phonetic groupings
are also shown. Results show that score-level combinations for the
two phonetic sets are similar, but fail to outperform the baseline.
[SRE 06, all trials, DCF×10, EER(%)].

System % Data EER (%) mDCF

Vowels (V) 60 6.17 0.296
Consonants (C) 40 7.91 0.391

Consonant subsets...
Non-Vowels (NV) 15 10.7 0.502

Sibilants (Si) 15 14.14 0.647
Stops (St) 10 15.27 0.685

V+ C 100 5.20 0.262
V + NV + Si + S. 100 5.42 0.272

Baseline 100 5.12 0.241

Table 1 presents the results for the baseline system, as well as
for each broad phonetic event of our set. There is a clear advantage
of the system using vowels alone, but it also represents 60% of the
entire data used. The score-level fusion on the 2-class is better than
for the 4-class set. However, while using the same amount of data,
the 2-class fusion performance is worse than the baseline system. In
the following paragraphs, we show how to improve the subsystem
combination.

3.2. Concatenation

The first model space approach investigated consists of concatenat-
ing parameters of the speaker from different phone sets. The follow-
ing experiments investigate at which level this concatenation should
occur. Let us consider the 2-class phone-set {V, C} for this ap-
proach. The resulting model supervector length will thus increase
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to 2NF . The main advantage of this method is that a single system
is used for the entire phone set.

3.2.1. Eigenvector concatenation

We first concatenate the eigenvectors from different phonetic events
during training and testing of the speaker models. Under this model,
the system will estimate a single set of latent variables x, y, z per
utterance, each of them being independent of the class.

ms =

„
m0

m0

«
+

„
VV

VC

«
y +

„
UV

UC

«
x +

„
DG 0
0 DG

«
z (3)

Here, the ranks of the subspaces are the same as in the baseline sys-
tem and the DG matrix is a copy of the D matrix from the baseline
system.

The results in Table 2 (first three rows) show a significant degra-
dation of the model concatenation style combination. It seems that
if the subspaces are trained separately, the projection on the result-
ing concatenated subspace does not reflect the classes appropriately.
This leads to the need to retrain subspaces explicitly to be tied to-
gether. It is important to note that the concatenation of the channel
eigenvectors decreases the performance much more compared to the
speaker eigenvectors. This supports the hypothesis that eigenvoices
should be the main focus when using a phonetic GMM system.

3.2.2. Baum-Welch statistics concatenation

For this experiment, the speaker and channel subspaces are retrained
using the concatenated first- and zero-order statistics from each pho-
netic event. The results in Table 2 show that this approach performs
close to the score-level combination, but fails to outperform it. How-
ever, the subspaces are effectively tied so that a robust estimate of the
latent variable can be produced. Consequently, a gain is observed
compared to the systems taken separately.

3.2.3. Tied factor analysis

Tied factor analysis has been used successfully in other fields such as
face recognition [11]. For this approach, the model is the same as in
Equation 3, but the eigenvectors for each phonetic event are trained
so that the latent variables are tied between the phonetic events. This
approach should be successful for a phonetic system, as the amount
of data for each event can vary, especially for very short conditions.
We applied the following algorithm until convergence:

• Estimate the latent variables for the concatenated Baum-
Welch statistics (like in 3.2.2).

• Estimate the matrices separately, on their respective statistics,
by maximizing the likelihood of the data with respect to the
latent variables of the previous step.

Table 2 shows that retraining the subspaces by concatenating the
statistics from each phone set or by using tied factor analysis leads to
similar performance. It seems the EM algorithm used for the factor
analysis model tends to tie the different phonetic events naturally.

3.3. Stacking

Another approach in the model space consists in stacking the eigen-
vectors of the subspaces together. In this approach, the dimension
of the model remains constant while the rank of the subspaces in-
creases. This leads to running one system per event before combin-
ing them at the score-level.

Table 2. Eigenvector concatenation on the 2-class set. The speaker
and the channel subspace used are shown along with the concate-
nation type. Results show that the subspaces have to be retrained to
obtain decent performance, using the standard EM or a Tied Factor
Analysis approach. [SRE 06, all trials, DCF×10, EER(%)]

System Speaker Channel EER (%) mDCF

Baseline VG UG 5.12 0.241

Eig. Concat. VV , VC UV , UC 13.4 0.573
Eig. Concat. VG UV , UC 11.3 0.531
Eig. Concat. VV , VC UG 7.02 0.378

BW Concat. VV , VC UV , UC 5.45 0.266
Tied FA {VV , VC}Tied UV , UC 5.32 0.268

3.3.1. Eigenvector stacking

The advantage of this method is its robustness to different stack-
ing configurations. Indeed, the latent variable estimation is enriched
with the information of other events while keeping a good estimate
for the current event. Let us consider two matrices from the 2-class
phone set VV and VC , and their respective latent variables yv , yc.
This approach captures cross-correlation between phonetic events
when estimating the latent components. Stacking the eigenvectors
for different events is equivalent to performing a sum in the super-
vector space. For the 2-class set, the system is expressed as:

mh = m0 +
`
VV VC

´ „
yV

yC
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+

`
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´ „
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«
+ DGz (4)

The DG matrix is the one from the baseline system. The ranks of
the resulting stacked matrices are 240 and 120, for the speaker and
the channel respectively.

3.3.2. Stacking in the speaker space and channel space

Stacking the channel eigenvectors was already demonstrated to
be successful for a different set of microphones [4]. Stacking the
speaker eigenvectors should be suitable for a phonetic GMM system
for two reasons. Firstly, speaker modeling should profit from cor-
relations between phonetic events. Secondly, using subspaces from
all phonetic events when evaluating a single phonetic event should
increase robustness to errors of the phonetic decoder.

Table 3. System combination using stacked eigenvectors for the
speaker space, channel space or both. The matrices selected in each
configuration are specified. Results tend to show that the relevant in-
formation is contained in the speaker space, as stacking the speaker
loadings gives better results than the score-level fusion. [SRE 06, all
trials, DCF×10, EER(%)]

System Speaker Channel EER mDCF

Baseline VG UG 5.12 0.241
Unstacked VV , VC UV , UC 5.20 0.262

Stacked VG UV , UC 5.34 0.260
Stacked VV , VC UG 5.09 0.247
Stacked VV , VC UV , UC 5.28 0.251
Stacked VV , VSt, VSi, VNV UG 5.03 0.250

Similarly to the concatenation experiments, results in Table 3
tend to show that the relevant information is contained in the speaker
space as stacking in the channel space degrades the results. This
means that a global channel matrix can be estimated and successfully
applied to all events. Therefore, we only present this configuration
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for the 4-class set. Stacking the speaker eigenvectors is a strategy
that outperforms the score-level combination and gives the results
similar to the baseline non-phonetic system. There is no observed
improvement by using the 4-class set over the 2-class one.

3.3.3. Stacked eigenvoices for the baseline system

In section 3.3, we showed that stacking the matrices for each pho-
netic event was a successful approach for a phonetic-based system.
One disadvantage of this method, compared to the method of Sec-
tion 3.2, is the need to run one system for each event.
The phonetic subspaces can, however, be used to generate large fac-
tor loading matrices. In the protocol, around 300 speakers are used
to train the eigenvoice matrix. This is also the maximum number
of eigenvoices that can be estimated. For the 4-class phone set, the
system has a rank of 480 for the speaker space. This number of
eigenvectors cannot be estimated from our data set. However, it is
interesting to use this large eigenvoice matrix for the baseline non-
phonetic system (channel matrices are not used here following the
results in Table 3). Under this scenario, the standard (non-phonetic)
statistics will be presented to the system while the stacked matrices
coming from different phonetic events are used as eigenvoices. The
channel matrix used is the one from the baseline system.

Table 4. Performance of the stacked eigenvoices generated from
different phonetic events on a non-phonetic system. Stacked eigen-
voices from the 4-class set outperform the baseline. [SRE 06, all
trials, DCF×10, EER(%)]

System Speaker EER (%) mDCF

Baseline VG 5.12 0.241
Stacked VV , VC 5.14 0.243
Stacked VV , VNV , VSt, VSi 4.76 0.234

Results in Table 4 show that stacking eigenvoices derived from
different phonetic events can be useful for improving performance
over the standard baseline system. It may also be that using more
classes may better the performance of the stacked system. Indeed,
using the stacked eigenvoices from the 4-class set outperforms the
baseline non-phonetic system and the 2-class system.

4. CONCLUSION

This work aims to take advantage of the recent developments in Joint
Factor Analysis in the context of a phonetically conditioned GMM
speaker verification system. We focused on strategies for combining
the phone-conditioned systems. Our first approach was to perform
JFA per class and combine the systems at the score-level. Our hy-
pothesis is that this approach does not use the data efficiently as the
performance is worse than the baseline. We later employed strate-
gies in the model space that more robustly estimate the latent vari-
ables by taking into account all phonetic events. In section 3.2, we
showed that the concatenation of eigenvectors could lead to decent
performance provided that the subspaces are explicitly retrained on
the concatenated statistics. In section 3.3, we showed that both fac-
tor concatenation and score-level fusion could be outperformed by
stacking eigenvectors from different phonetic events. For the pho-
netic system, stacking the eigenvoices leads to the greatest improve-
ment. We also proposed to use this large set of eigenvoices on the
baseline system and showed that it could result in a slight improve-
ment over the traditional baseline system.

While the focus of this work is on phone-conditioned JFA sys-
tems, the implications may lead to a better understanding of the JFA

model and a methodology that can be applied to increase robustness
to other kinds of conditions such as language, gender and micro-
phones. Future work will focus on understanding the differences and
overlaps between the global and per-class estimates, in the channel
and the speaker space, and methods to extract more information for
a more robust estimate of speaker models.
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