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ABSTRACT 
 
Joint factor analysis (JFA) has been successfully applied to 
speaker verification tasks to tackle speaker and session variability. 
In the sense of Bayesian statistics, it is beneficial to take account 
of the uncertainties in JFA to better characterize its speaker 
enrollment and verification processes, e.g. representing target 
speaker model by posteriori distribution of latent speaker factors 
and evaluating model likelihood by integrating over all latent 
factors. However, in a JFA model which has a large number of 
latent factors, it is computationally demanding to carry out these 
things in their exact form.  In this paper, an alternative approach 
based on variational Bayesian is developed to explore uncertainties 
in JFA in an approximate yet efficient way. In this method, fully 
correlated posteriori distribution is approximated by a variational 
distribution of factorial form to facilitate inference; and a tight 
lower bound on model likelihood is derived. Experimental results 
on the 10sec4w-10sec4w task of the 2006 NIST SRE show that 
variational Bayesian JFA could obtain better performance than 
JFA using point estimate. 
 

Index Terms—speaker verification, Gaussian mixture model, 
joint factor analysis, Bayesian statistics, variational approximation 
 

1. INTRODUCTION 
 
In recent years, joint factor analysis (JFA) has been successfully 
applied in many text independent speaker verification systems to 
deal with speaker and session variability in Gaussian mixtures 
models (GMMs) [1-5]. In the general Bayesian framework of JFA 
[1, 2], speaker and channel factors are introduced as latent or 
hidden random variables which have a proper priori distribution to 
characterize priori knowledge about speaker and session 
variability; target speaker model is represented by the posteriori 
distribution of latent speaker factors on enrollment data and 
likelihood score of JFA model is evaluated by integrating over all 
unobserved latent variables. This Bayesian framework could 
effectively account for uncertainties in the model and provide a 
better characterization of the speaker verification process. 

However, in a JFA model which has a large number of latent 
variables, it is computationally expensive to carry out Bayesian 
inference in its exact form as all of the latent variables become 
correlated with each other in the posteriori distribution. This leads 
to using maximum likelihood (ML) or maximum a posteriori 
(MAP) point estimate of latent factors in many implementations of 
JFA [3-5]. The problem with point estimate lies in that it might not 
be reliable with limited data. Some experimental results also 
suggested that ignoring the uncertainties in JFA would degrade 
speaker verification performance [2].  

To explore the uncertainties in JFA while reducing 
computational complexity of fully Bayesian inference, variational 
Bayesian JFA was proposed in this paper. In this method, the exact 
posteriori distribution of all latent factors in JFA is approximated 
by a variational distribution of factorial form from which marginal 
posteriori distribution over latent speaker factors (as well as latent 
channel factors) can be derived efficiently. The factorized 
approximation is then optimized through variational Bayesian to 
minimize the Kullback-Leibler divergence between it and the true 
posteriori. The log likelihood of JFA model integrating over all 
latent factors is also approximated by a tight lower bound based on 
variational Bayesian. Experimental results on the 10sec4w-
10sec4w task of the 2006 NIST Speaker Recognition Evaluation 
(SRE) show that the variational Bayesian approach can effectively 
account for uncertainties in JFA and obtain better performance 
than using only point estimate in JFA. 
 

2. VARIATIONAL BAYESIAN JOINT FACTOR 
ANALYSIS FOR SPEAKER VERIFICATION 

 
The Gaussian Mixture Model – Universal Background Model 
(GMM-UBM) systems [6] are widely used for text independent 
speaker verification tasks. In these systems, a GMM with C 
components is parameterized by , , ; 1, ,c c cw c C , where 

, cw c  and c  are the component weight, mean vector and 
covariance matrix of the c-th component respectively. A GMM 
mean supervector is constructed by concatenating all of the mean 
vectors in corresponding GMM: 
 1 2 ,

TT T T
CM  (1) 

whose dimension is CF where F is the dimension of acoustic 
feature vectors. 

Joint factor analysis is a technique to model speaker and 
session variability in GMMs [1, 2]. It has a latent description of the 
form: 
 .M m Vy Dz Ux  (2) 
In this model, m characterizes the mean of speaker supervectors (in 
our study, m is set to be the supervector of UBM). Both V and U 
are low rank transformation matrices. The columns in V are 
usually called eigenvoices and it is assumed that the majority of 
speaker variability is contained in the subspace spanned by the 
eigenvoices. And, the columns in U are referred to as 
eigenchannels which are used to characterize the effects of session 
or channel variability. D is a  diagonal matrix which 
provides the possibility to model residual speaker variability that is 
not contained in the low dimensional subspace spanned by 
eigenvoices. x, y and z are random vectors. In this paper, the 

CF CF
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components of y and z are referred to generally as speaker factors; 
and the components of x are called channel factors. 

A Gaussian priori is used for these speaker and channel 
factors, which assumes statistical independence among them [1, 2]: 

 
1 2 3

; , ; , ; ,y y z z x x

P H P y P z P x

N y B N z B N x B
 (3) 

where we refer to all latent factors in JFA by H  for abbreviation. 
All covariance matrices in this priori distribution are restricted to 
be diagonal and all mean vectors are set to be zero. 

In the sense of Bayesian statistics, given enrollment data of 
target speaker,  (of T acoustic feature vectors, 1, 2, …, T), we 

can get the posteriori distribution of these latent factors, P H . 
And, speaker dependent model is characterized by the marginal 
posteriori distribution of latent speaker factors: 
 , , ,P y z P x y z dx  (4) 

For Gaussian priori, the posteriori distribution is also 
Gaussian and can be calculated in close form [1]. However, the 
latent speaker factors and channel factors become correlated with 
each other in the posteriori distribution. When the number of latent 
factors is large (e.g., the JFA in our experiments had 105,048 
latent variables), manipulating the fully posteriori distribution 
would be computationally demanding. 
 
2.1. Variational Bayesian approximation to posteriori 
distribution of JFA  
 
An alternative approach based on variational Bayesian [7] is 
studied here. Instead of using the fully posteriori 
distribution P H , it is approximated by a variational 
distribution of factorial form which decouples the correlation 
among speaker and channel factors: 
 1 2 3Q H Q y Q z Q x  (5) N

From this factorized distribution, marginal distribution over 
speaker factors (as well as channel factors) can be derived 
efficiently. 

Variational Bayesian is then used to optimize Q H  by 
minimizing the Kullback-Leibler (KL) divergence between it and 
the true posteriori [7, 8]: 

 

* arg min

arg min log

Q

Q H

Q KL Q P

Q H
Q H dH

P H

 (6) 

With Bayes theorem,  the KL divergence can be written as: 

 
log log

,

log .

Q H
KL Q P Q H dH P

P H

P L Q

 (7) 

Here, L Q  is defined to be an auxiliary function: 

 log ,
Q

L Q P H Q  (8) 

where 
Q

 stands for an expectation with respect to the 

distribution  and  is the entropy of Q . As Q Q log P � does 

not depend on Q , minimizing KL divergence can be achieved by 
maximizing the auxiliary function: 

 * argmax
Q

Q L Q  (9) 

For the variational distribution of factorial form in (5), it can 
be shown that the optimal solution of each factor, *

jQ , can be 
written in terms of its logarithm [8]: 
 *log log , ,

j
j Q

Q P H const  (10) 

where the notation, 
jQ
, represents an expectation with respect 

to all factors except jQ . Equation (10) is an implicit solution as it 
depends on the settings of other factors. Hence, an iterative 
procedure can be applied which updates each factor in turn until 
L Q  converges. This is similar to the Gauss-Seidel iterative 
process proposed in [3, 4]. 

For speaker factors in y, its  can then be written to be: *
1Q y

1

2 3

*
1

1

log log ,

log log , , ,
t

Q

t t Q Q
t c

Q y P H const

P y Q c P y z x c const
 (11) 

where the random variable t  represents a component selector 
indicating which Gaussian component in GMM the t-th acoustic 
feature is drawn from; and 

t
Q  is the posteriori distribution of t . 

For the c-th component, its zero and first order statistics can then 
defined to be: 
 , .   

t tc t c t
t t

N Q c F Q c t  (12) 

After some algebraic manipulation, from (11) we can then get 
that *

1Q y follows a Gaussian distribution with mean: 

 1 1 1 ,T
y y y y z xL B V F N m D U  (13) 

and covariance matrix: 
  (14) 1

y yB L

where  is a CF CF  diagonal matrix whose diagonal blocks 
are cN I (c=1, 2…C), F is a supervector by stacking 

(c=1, 2…C), 
1CF

cF  is CF CF  block diagonal matrix whose 
diagonal blocks are c (c=1, 2…C) and  is set to be yL

1 1 ;  and x  are the posteriori mean vectors of z 

and x with respect to current setting of and 2Q z 3Q x . 

T
yB V N V z

With a similar procedure, we can derive that  and  are 
also Gaussian. Their mean vectors and covariance matrices have 
similar expressions as (13) and (14). 

*
2Q *

3Q

 
2.2. Variational Bayesian lower bound on log likelihood 
of JFA  
 
Based on the factorized approximation to fully posteriori 
distribution, in speaker dependent joint factor analysis model, the 
distribution over latent factors is then specified by: 
 ; , ; , ; ,S y y z zP H N y B N z B N x Bx x  (15) 

where the parameters, y , , yB z  and zB , are optimized by 
variational Bayesian algorithm over enrollment data (as presented 
in Section 2.1); for the channel factors, we still use the priori 
distribution specified in (3) and ignore their posteriori distribution 
learned from enrollment data. 
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At verification time, given test data, , model likelihood is 
evaluated by integrating over all latent factors and detection score 
is: 

 1 1log log .
S t

S t

t
t

P H P H dH
P

S
T P T P H P H dH

 (16) 

where tP H  is the GMM observation probability: 

 
1

; ,
C

t c t
c

P H w N M ,c c  (17) 

cM is the c-th subvector of the GMM supervector corresponding 
to the c-th component. 

Since it is difficult to evaluate the integration directly, an 
approximation based on variational Bayesian is presented here.  

From (7), we can see that L Q  presents a lower bound on 
the log likelihood with the difference being the KL divergence. It 
then follows that if the variational distribution is optimized (with 
respect to test data at verification time) to be a good approximation 
in terms of KL divergence, then the bound, *L Q , will be tight 

and will provide a good approximation to the log likelihood: 
 *log P L Q  (18) 

For JFA, the lower bound can then be evaluated as: 

 

* * *
1 2 3

* *

* *
1 1 2 2

* *
3 3

log , , ,
t

t

t t Q Q Q
t c

t t
t

L Q Q c P y z x c

KL Q y P y KL Q z P z

KL Q x P x KL Q P

 (19) 

where P and *Q  represents respectively the priori and 
optimized variational posteriori distributions of latent variables. 

The priori distribution of component selector, t , is 
determined by the mixture weights in UBM, i.e.: 
 , 1,2, ,  t cP c w c C.  (20) 

The posteriori distributions of component selectors can also 
be approximated optimally through variational Bayesian. We have: 
 

* * *
1 2 3

*log log log , , , ,
t t c t Q Q Q

Q c w P y z x c tE  (21) 

where  is a normalization quantity: tE

 
* * *
1 2 3

log exp log , , , .t c t Q Q Q
c

E w P y z x c  (22) 

Substituting (21) into (19), we get: 

 
* * *
1 2 3

*

* * *
1 1 2 2 3 3

log exp log , , ,

.

c t Q Q Q
t c

L Q w P y z x c

KL Q P KL Q P KL Q P

 (23) 

The expectation of observation probability with respect to the 
posteriori distribution of latent factors can be evaluated as: 

* * *
1 2 3

*
1

* *
2 3

1 22

1 1

1 1

1log , , , log
2

1 tr
2

tr tr

t FQ Q Q
c

T T
t c c t c c c c Q

T T
c c c c c cQ Q

P y z x c

M M V V Cov y

D D Cov z U U Cov x

 (24) 

where , , and  denote respectively the c-th block of V , 

, and 
cV cU cD

U D corresponding to the c-th component; *
jQ

Cov  

represents the covariance matrix of *
jQ . The expectation of cM  is 

calculated as: 
 * *

1 2
.c c c c cQ Q

M m V y D z U x *
3Q

 (25) 

As the speaker dependent model in (15) has the same 
functional form as the background model in (3), we can also get a 
tight lower bound on log SP : 

 *log S SP L Q  (26) 

The log likelihood ratio in (16) can then be approximated by 
these lower bounds as: 
 * * .SS L Q L Q T  (27) 

 
2.3. Implementation details  
 
In our variational Bayesian JFA, ,  and  are initialized to 

be their priori counterpart; and 
1Q 2Q 3Q

t tQ  is initialized with UBM: 

 

1

; ,
.

; ,
t

c t c c
t C

m t m m
m

w N
Q c

w N
 (28) 

We firstly optimize the variational distributions of speaker and 
channel factors iteratively while fixing 

t tQ ; in our 
experiments, 5 iterations are sufficient for convergence in this 
stage. Then, we optimize 

t tQ  to make the lower bound 
*L Q  tight; in this stage, we take account of the uncertainties in 

speaker and channel factors. These two stages can be carried out 
iteratively. In our experiments, a single iteration was performed. 

When evaluating log likelihood ratio between speaker 
dependent and background JFA models at verification time, the 
covariance matrices of speaker factors in these JFA models are 
properly scaled to constrain the variability of these factors 
confronting test data: 
 .,  (29)  y y z zB B B B

We found such kind of scaling could make detection scores more 
stable and improve verification performance;  was set to be 0.1 
in our experiments. 
 

3. EXPERIMENTAL RESULTS 
 
Speaker verification experiments were carried out on the 10sec4w-
10sec4w task of the 2006 NIST SRE [9]. In this task, the length of 
enrollment and test utterances is about 10 seconds; and there are a 
total of 2,942 true trials and 29,608 false trials. 

In our systems, the acoustic features were a 51-dimentional 
PLP vector. We used a gender independent UBM with 2048 
Gaussians trained from the Switchboard corpora (I, II and Cellular 
parts). Our factor analysis model had 500 eigenvoices and 100 
eigenchannels, which were estimated using PCA on the 2004 and 
2005 NIST SRE corpora. As in [4], the D matrix in our JFA model 
was set according to the following equation, 1TI D D , where 

 is 16 in our experiments. 
Four different schemes of JFA were compared: 
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 In the “Baseline” system, target speaker model is constructed 
by the MAP point estimate of speaker factors on enrollment data. 
At verification time, session factors are not used. Log likelihood 
ratio test is carried out through: 

 1 log
t y

t
B

t
t

p m V D
S

T p m

z

 (30) 

 In the “Eigenchannel Adaptation” system, target speaker 
models are constructed in the same way as the “Baseline”. MAP 
point estimates of channel factors are obtained at verification time 
for target speaker and background models, i.e., x  and x . And 
likelihood ratio score is evaluated as: 

 1 log
t y z

t
A

t x
t

p m V D U
S

T p m U

x

 (31) 

This scoring scheme is similar to that used in [5]. 
 In the “Eigenchannel Integration” system, for speaker factors, 

we still use its MAP point estimate derived from enrollment data; 
at verification time, log-likelihood score is evaluate by integrating 
over channel factors to take account of uncertainty in them: 

 1 log
t y z

t
I

t
t

P x p m V D Ux dx
S

T P x p m Ux dx
 (32) 

An approximation to the integrations in (32) can be obtained by 
dropping off KL divergence and covariance terms related to 
speaker factors in (23) - (25). 
 The “Variational Bayesian JFA” system is what we 

developed in this paper. 
In Fig. 1, we show verification performance of these systems. 

Comparing “Baseline” and “Eigenchannel Adaptation”, we see 
that incorporating channel factors for session variability can 
improve verification performance over the baseline. As the test 
utterances are very short in this task, the point estimate of channel 
factor might not be reliable. After integrating over the uncertainty 
in channel factors, better performance was obtained by 
“Eigenchannel Integration” than “Eigenchannel Adaptation”. In 
the “Variational Bayesian JFA” system, we not only consider 
uncertainty in channel factors but also take into account the 
uncertainty in speaker factors due to limited enrollment data. This 
is proven helpful and the “Variational Bayesian JFA” system 
obtained the best performance among these four systems.  
 

4. CONCLUSIONS 
 
In this paper, variational Bayesian algorithm is used to do 
approximate inference in joint factor analysis for speaker 
verification. After approximating the fully correlated posteriori 
distribution of all latent factors by a variational distribution of 
factorial form, posteriori distribution of speaker factors can be 
derived efficiently without computationally demanding 
marginalization procedure. Target speaker models are then 
represented by such kind of posteriori distribution, which can 
better characterize the uncertainty in the enrollment process than 
mere point estimate. With variational Bayesian algorithm, we also 
derive a lower bound on the log likelihood of joint factor analysis 
which integrates over all latent factors to take account of 
uncertainties in them. Experimental results show that variational 

Bayesian provides an effective approach to explore uncertainties in 
joint factor analysis and obtains promising verification 
performance. 

Fig.1 DET curves for different schemes of JFA on the 10sec4w-
10sec4w task of the 2006 NIST SRE 
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