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ABSTRACT

The problem of background dataset selection in SVM-based
speaker verification is addressed through the proposal of a new data-
driven selection technique. Based on support vector selection, the
proposed approach introduces a method to individually assess the
suitability of each candidate impostor example for use in the back-
ground dataset. The technique can then produce a refined back-
ground dataset by selecting only the most informative impostor ex-
amples. Improvements of 13% in min. DCF and 10% in EER were
found on the SRE 2006 development corpus when using the pro-
posed method over the best heuristically chosen set. The technique
was also shown to generalise to the unseen NIST 2008 SRE corpus.

Index Terms— speaker recognition, data selection, support vec-
tor machines

1. INTRODUCTION

Most studies regarding SVM-based speaker verification have fo-
cussed on improving classification through the development of novel
kernels and the optimisation of their associated parameters [1, 2, 3],
however, a factor that can have a significant impact on classification
performance is the choice of impostor set used in SVM training. In
an SVM speaker verification system, a speaker model is commonly
trained using a single utterance and a collection of negative or impos-
tor observations, known as the background dataset. As the number of
background examples significantly outweighs that of speaker exam-
ples, the SVM system relies heavily on the background observations
in order to provide most of the observable discriminatory informa-
tion. The background dataset must, therefore, consist of suitable
impostor examples to ensure good classification performance.

The importance of selecting an appropriate background dataset
to match the evaluation conditions has been highlighted in several
recent studies [4, 5, 6]. The selection of a background dataset is of-
ten based on the knowledge of the broad characteristics expected in
any impostor trials such as gender, language and the method of audio
acquisition. Available data sources that satisfy these criteria can be
utilised to compile various background dataset combinations which
are then subject to development evaluations in order to heuristically
select the most suitable impostor dataset. Although good perfor-
mance can be obtained using this approach, it is not a systematic
process, basing impostor selection on the performance of an entire
set rather than analysing how much potential each impostor example
offers to the background dataset.

This paper proposes an automated, data-driven technique for the
selection of a suitable subset of impostor examples from a large and
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diverse set of examples for use as an SVM background dataset. A
metric for the impostor suitability of an example is defined based on
support vector selection frequency.

An example of heuristic background dataset selection is given
in Section 2 along with a discussion on the drawbacks of the ap-
proach. Described in Section 3 is how support vector training can
be exploited in the task of data selection followed by the proposal
of the data-driven background dataset selection technique. Section
4 details the experimental configuration with results and discussions
presented in Section 5.

2. HEURISTIC BACKGROUND DATASET SELECTION

Background dataset selection has traditionally been based on heuris-
tics. This approach typically involves development evaluations in
which various combinations of impostor datasets are used during
SVM training. The background dataset contributing to the best per-
formance is then regarded as the most suitable set of negative exam-
ples for the task of representing the impostor population.

As a starting point for further investigation, development evalu-
ations were conducted on the English-only condition of NIST 2006
SRE using a GMM mean supervector SVM classifier employing nui-
sance attribute projection (NAP) [2]. T-norm score normalisation [7]
was applied to all scores using the background dataset as the T-norm
cohort. A detailed description of this configuration is described in
Section 4.

2.1. Impostor Data Sources

Gender-dependent background datasets were collected from NIST
2004 and NIST 2005 databases and a random selection of 2000 ut-
terances1 from each of Fisher and Switchboard 2 corpora giving a
total of 6444 male and 7766 female observations. The number of
impostor examples from each of these data sources can be found in
Table 1. The limited amount of data from the NIST 2005 corpus is
due to the intentional exclusion of utterances from any speakers that
also appear in the NIST 2006 corpus. For this study, these datasets
consisted only of telephony data. Conversations were spoken in a
range of languages with the majority in English.

2.2. Development Evaluations

The results from development evaluations using a number of differ-
ent background dataset configurations are detailed in Table 2. It can
be seen from these results that the best performance was achieved
when using the NIST 2004 corpus alone. For the remainder of the

1Selected randomly due to memory limitations restricting the full back-
ground dataset size to around 8000.
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Table 1. Number of impostor examples from each data source.

Gender Fisher SWB2 NIST04 NIST05
Male 2000 2000 1901 543
Female 2000 2000 2651 1115

Table 2. T-normed results from English NIST 2006 SRE using dif-
ferent background datasets.

Background Min. DCF EER
NIST04 .0135 2.82%
NIST04 (English-only) .0140 2.93%
NIST05 .0174 3.48%
Fisher .0155 3.03%
SWB2 .0178 3.48%

NIST04 + NIST05 .0143 3.09%
NIST04 + Fisher .0136 2.82%
NIST04 + SWB2 .0141 2.98%

Full Dataset .0152 3.21%

paper, this set was defined as the heuristically-selected background
dataset.

Combining the NIST 2004 dataset with impostor data from an
alternate source resulted in the degradation of performance despite
the significant increase in the number of impostor examples. Sur-
prisingly, using only the English observations from the NIST 2004
dataset performed worse than the all-language NIST 2004 dataset
despite development evaluations being performed on English-only
trials.

The major shortcoming of the heuristic-based approach to back-
ground dataset selection is that the compilation of the candidate
datasets lacks methodical structure and is based on very broad char-
acteristics such as data source and language rather than on a per-
example basis. Consequently, the apparent performance offered
through heuristic-based selection relies on one of the candidate
datasets being closely matched to the development evaluation con-
ditions. Unless the suitability of each example for use in the back-
ground dataset is analysed, less appropriate impostor observations
may unknowingly pollute the impostor population and ultimately
prevent optimal classification performance from being achieved.

Although the results in Table 2 show that of the candidate
datasets, the NIST 2004 dataset was the most suitable background
dataset in the development evaluations, the classification perfor-
mance when using alternate, single-sourced impostor datasets in-
dicates that some degree of useful discriminative information was
available in these sets. It seems reasonable, then, to assume that
a subset of useful impostor examples may exist in each of these
datasets. Without becoming a tedious and very time consuming task,
the heuristic-based approach is unable to fully exploit these informa-
tive subsets of impostor examples.

3. DATA-DRIVEN BACKGROUND DATASET SELECTION

One approach to systematically selecting a background dataset for
SVM training is to use a development dataset to drive the se-
lection of impostor examples. Developing a method to rank all
available impostor examples by their relevance to the background
dataset will allow background dataset selection to be performed on
a per-observation basis, thereby overcoming the shortcoming of the
heuristic-based approach. A suitable criterion to perform this im-
postor observation ranking involves exploiting the information pos-
sessed by the support vectors of a trained SVM.

3.1. Support Vector Frequency

The support vector machine is a discriminative classifier trained to
separate classes in a high-dimensional space. A kernel is used to
project input vectors into this high-dimensional space where a sepa-
rating hyperplane is positioned to maximise the margin between the
classes [8]. The training of a speaker SVM results in the selection
of a subset of both positive and negative examples from the training
dataset termed support vectors and are used to construct the separat-
ing hyperplane. Examples that are selected as support vectors hold
a common property of being the most difficult to classify as they lie
on or within the margin between classes. In contrast, those training
examples that are not selected as support vectors provide no infor-
mation in the training of the SVM.

The process of determining a subset of support vectors from the
training observations can be considered a data selection process in
which the most informative examples are chosen. In light of this, it
can be stated that the impostor support vectors are the most informa-
tive set of background examples with respect to the client data.

Based on this observation, the support vector frequency of an
example provides a measure of its relative importance in the back-
ground dataset. The support vector frequency of an example is de-
fined as the number of times that it is selected as a support vector
while training a set of SVMs on a development dataset. The resolu-
tion of the support vector frequency metric is dependent on the size
of development dataset used for this purpose.

3.2. Background Dataset Refinement

Given a diverse set of vectors B, compiled from a number of avail-
able resources, this dataset can be refined into a suitable impostor
dataset using a set of development client vectors S. The speakers
and vectors in the set S should be disjoint from those in B.

1. Using the full set of impostors B as the background dataset,
train SVMs for each vector in the set of development client
models S.

2. Calculate the support vector frequency of each impostor ex-
ample in B as the total number of instances in which it was
selected as a support vector for the development client mod-
els.

3. The refined background dataset RN is chosen as the top N
subset of B ranked by the support vector frequency (RN ⊂
B).

4. For several values of N , use RN in the evaluation of a devel-
opment corpus to determine the optimal number of examples
to be included in the refined dataset.

It is important to note that the support vector frequencies are
likely to be heavily dependent on the characteristics found in the
development set S. For this reason, S should be selected based on
the knowledge of the broad characteristics (such as gender, language
and audio conditions) expected to exist in the corpus for which the
background dataset is intended to be used in SVM training.

4. EXPERIMENTAL CONFIGURATION

The following experiments were developed with two objectives in
mind. Firstly, to determine whether support vector frequency is reli-
able as an impostor suitability metric, and secondly, to determine the
ability of the refined background dataset to generalise to the unseen
data.
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4.1. GMM-SVM System

SVM classification in the following experiments was based on GMM
mean supervectors using the associated GMM mean supervector ker-
nel [2]. The GMM system used in this study was based on 512-
component models and was previously described in [9].

The SVM implementation uses the open source ALIZE/SpkDet
package [10] distributed by LIA and is based on the the libSVM
library [11]. Nuisance attribute projection (NAP) [2] was employed
to reduce session variation with the 50 dimensions of greatest session
variation being removed from all supervectors.

4.2. Evaluation Datasets

Large gender-dependent background datasets B were compiled from
all available resources as listed in Table 1 and described in Section
2.1.

The gender-dependent development client dataset S used to cal-
culate support vector frequencies was compiled from the English
training and testing utterances in the 1conv4w condition of the NIST
2006 SRE, being the same development dataset used for heuristic-
based selection in Section 2. Consisting of 1331 male and 1852
female client vectors, this provided a moderate degree of resolution
in the support vector frequency statistic.

The NIST 2008 SRE corpus was used to observe how well the
refined background dataset generalised to unseen data. All NIST
2008 results were derived from condition 7 as specified in the official
evaluation protocol which restricts trials to English spoken telephony
data, matching the conditions found in the development dataset S.

T-norm score normalisation [7] was applied to all scores with
results pooled after being evaluated on a gender-dependent basis. As
an ideal set of T-norm models consists of a diverse range of impos-
tor models, the background dataset was used as the T-norm cohort in
this study. A leave-one-out approach was used to train these models.
Consequently, the T-norm cohort was refined along with the back-
ground dataset.

5. RESULTS

5.1. Analysis of Support Vector Frequency

As an initial indicator as to whether the support vector frequency is
an adequate metric to represent the suitability of an impostor obser-
vation, the 1000 highest ranked and 1000 lowest ranked supervectors
were selected on a gender-dependent basis. Table 3 details the per-
formance obtained using these background datasets compared to the
full set of impostor examples.

The performance difference between evaluations using the 1000
examples of highest and lowest support vector frequency, detailed in
Table 3, demonstrates that support vector frequency is an appropriate
measure of the impostor example suitability. Despite consisting of
the same number of observations, it is clear that the suitability of the
background dataset to the evaluation corpus plays an important role
in the performance of an SVM-based speaker verification system.

Through the removal of around 85% of the full set of impostor
examples, the background dataset made up of the 1000 highest rank-
ing observations provided a relative gain of 18% in DCF and 17%
in EER, while using the 1000 lowest ranking observations demon-
strated a loss of 18% in DCF and 8% in EER over the full back-
ground dataset. These statistics draw attention to two attributes as-
sociated with the choice of background dataset. Firstly, significant
variation in classification performance is possible from background
datasets of the same size and secondly, improved performance can be

Table 3. Performance of T-normed scores from 1-sided, English
NIST 2006 trials when using SVM background datasets refined by
impostor support vector frequency.

Background Dataset Min. DCF EER
Full Dataset .0152 3.21%
1000 Highest Frequency .0125 2.65%
1000 Lowest Frequency .0179 3.46%

achieved by selecting backgound examples that are highly relevant
to the evaluation conditions, even with a reduced overall quantity.

5.2. Generalisation of Background Refinement Technique

Presented in Figure 1 is a plot of the min. DCF of both the NIST
2006 and 2008 evaluations as the background dataset was refined
by removing the observations of the lowest support vector frequency
determined using NIST 2006 data. Results are presented for both
un-normalised and T-normed scores.

The plot demonstrates that the proposed background dataset re-
finement procedure generalises well to unseen data, however the
conditions of the development data become more dominant in the
refined impostor set when using less than around 2000 examples. T-
normalisation appears to provide stable performance gains over un-
normalised scores for the range of background dataset sizes despite
the implicit refinement of the T-norm cohort (See Section 4.2).

Based on the plot in Figure 1, the best performance on the NIST
2006 corpus is found when using only 10-15% of the full set of
impostor examples B in the background dataset. This presents an
important finding that a large proportion of observations in the full
dataset are not beneficial to the SVM background dataset and, in fact,
contribute to a loss in performance even though they have originated
from sources holding similar characteristics. The performance on
the NIST 2008 corpus, on the other hand, is maximised when using
between 15-50% of the full dataset indicating that if the full set is
refined too extensively, the resulting impostor set may be too closely
matched to the development corpus impeding its ability to gener-
alise.

A sharp rise in the min. DCF curve in Figure 1 is observed as
the size of the background dataset is reduced to less than around 500
observations. Although these small impostor sets consist of exam-
ples of the highest support vector frequency, the drop in performance
draws attention to the necessity of adequate coverage of impostor
space to prevent client SVMs from being under-trained [3].

Performance statistics of T-normed scores from evaluations us-
ing several different sizes of refined background datasets and the
heuristically chosen background dataset of NIST 2004 data (as de-
termined in Section 2) are detailed in Table 4. It can be observed that
the heuristically selected background dataset provided a marginal
2% min. DCF improvement over the full dataset in the NIST 2008
SRE despite demonstrating a gains of more than 11% in both min.
DCF and EER on the development corpus. The best performing
evaluation on the NIST 2006 corpus was obtained when using the
refined background dataset R500 providing a relative gain of 23%
in min. DCF and 21% in EER over the full set of impostors. Us-
ing R500 as the background dataset in the NIST 2008 SRE provided
more modest improvements of 6% in min. DCF and 3% gain in EER.
These results demonstrate that the proposed background dataset re-
finement technique can sucessfully determine a more suitable set of
impostor examples from a number of different sources than a set cho-
sen through simple heuristic evaluations. Additionally, this superior
performance was be achieved using less than 30% of the number
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Fig. 1. Un-normalised and T-normed min. DCF on 1-sided, English
NIST 2006 and 2008 SRE as the background dataset is refined.

Table 4. Min. DCF and EER obtained from T-normed scores on the
1-sided, English NIST 2006 and 2008 SRE when using full, heuristi-
cally determined and refined background datasets for SVM training.

Set 2006 2008
Min. DCF EER Min. DCF EER

Full .0152 3.21% .0185 4.29%
Heuristic .0135 2.82% .0182 4.31%
R2000 .0133 2.65% .0167 4.01%
R1000 .0125 2.65% .0167 4.15%
R500 .0117 2.55% .0174 4.16%
R250 .0125 2.60% .0185 4.22%

of examples found in the heuristic set, increasing the computational
efficiency of SVM training [3].

5.3. Database Contribution to Refined Background Dataset

The proportions of source databases that make up the best refined
background dataset of 500 observations are detailed in Table 5 in
terms of percentages. When compared to the full dataset, the NIST
2005 database maintains a steady contribution in the refined dataset
while the contributions of both NIST 2004 and Fisher data increase
to around 40%. A significant proportion of examples from the
Switchboard 2 database appears to be unsuitable for use as back-
ground examples in the NIST 2006 SRE with most observations be-
ing removed through background dataset refinement.

In Section 2, it was shown that adding another dataset to the
NIST 2004 dataset resulted in degraded performance. The figures
in Table 5 indicate that the background dataset refinement tech-
nique was able to exploit a small subset of informative impostor ex-
amples from each of these alternative data sources, demonstrating
the benefits of selecting a background dataset using a systematic,
observation-based procedure rather than on a data source basis used
in the heuristic-based approach.

6. CONCLUSION

Proposed was a novel, data-driven approach to the selection of a set
of suitable impostor examples for use as the background dataset in
SVM-based speaker verification systems through the refinement of a

Table 5. Contribution of databases to full impostor set and refined
background dataset of 500 highest ranking observations.

Male Female
Data source Full R500 Full R500

Fisher 31% 42% 26% 35%
Switchboard 2 31% 10% 26% 7%
NIST 2004 30% 41% 34% 42%
NIST 2005 8% 6% 14% 16%

large and diverse dataset. Support vector selection frequency in the
SVM training process was used to provide a measure of impostor
suitability for each observation.

The NIST 2006 SRE database was used to calculate support vec-
tor frequencies on a large set of impostor examples. Using a refined
background dataset of the 500 highest ranking observations in the
evaluation of the NIST 2006 corpus gave relative improvements of
23% in min. DCF and 21% in EER over the full background dataset
demonstrating that the support vector frequency was an appropriate
measure for the suitability of impostor example.

The background refinement technique was shown to generalise
well to the NIST 2008 SRE where the refined background dataset
was found to provide gains in both DCF and EER over a heuristically
selected set of impostor examples.
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