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ABSTRACT

This paper describes a novel approach for discriminative modeling
and its application to automatic text-independent speaker verifica-
tion. This approach maximizes the margin between the model scores
for pairs of utterances belonging to the same speaker and for pairs of
utterances belonging to different speakers. A low-dimensional linear
kernel is estimated which maximizes this margin. This approach em-
phasizes features which have a better ability to discriminate between
scores belonging to pairs of utterances of the same target speakers
and those of different speakers. In this paper, we apply this ap-
proach to the NIST 2005 speaker verification task. Compared to the
Gaussian mixture model (GMM) baseline system, a 17.7% relative
improvement in the minimum detection cost function (DCF) and a
11.7% relative improvement in equal error rate (EER) are obtained.
We achieve also a 5.7% relative improvement in EER and 2.3% rela-
tive improvement in DCF by using our approach on top of a nuisance
attribute projection (NAP) compensated GMM based kernel baseline
system.

Index Terms— Speaker verification, maximum margin, dis-
criminative training, GMM, nuisance attribute projection

1. INTRODUCTION

Maintaining data security and authenticity in speech-driven tele-
phony applications can be performed effectively through speaker
verification. Current automatic speaker verification systems face
significant challenges caused by adverse acoustic conditions. Tele-
phone band limitation, channel/transducer variability, as well as the
natural speech variability all have a negative impact on the perfor-
mance of speaker verification systems. Degradation in the perfor-
mance of speaker verification and recognition systems due to inter-
session variability has been one of the main challenges to actual de-
ployment of speaker verification and recognition technologies.

A number of techniques have been proposed to solve these prob-
lems, including feature warping [1], feature mapping [2], and score
normalization techniques like H-norm [9] and T-norm [3]. More re-
cent approaches to compensate for channel effects and speech vari-
ability in the training and the testing utterances include using factor
analysis [4], within-class covariance normalization (WCCN) [5],
and nuisance attribute projection (NAP) [6]. Both WCCN and NAP
modify a generalized linear kernel for a GMM based kernel to miti-
gate the effects of inter-session variability in the feature space.

Sequence kernel based methods have become one of the most
important techniques for speaker verification. Since the amount of
available training data for speaker verification is usually limited, and
is affected by inter-session variability, the choice of the proper kernel
was addressed many times in previous work. Most of previous work
focused on generalized linear kernels with a high-dimensionality

kernel feature space [7]. In [7], the linear kernel was set to a func-
tion of the enrollment and test utterances which included an inverse
of the covariance matrix of the development data statistics. NAP is
one of the most successful and widely used techniques for perform-
ing session compensation in speaker verification systems [6]. Our
implementation of NAP is a variation of linear discriminant analysis
(LDA) where the across-class covariance matrix is set to the identity
matrix. However, the approach does not weight the retained direc-
tions in the feature space. In WCCN [5], the linear kernel is set to
the inverse of the expected within-class covariance matrix over all
speakers in the training data. This choice is motivated by showing
that it minimizes a particular upper bound of the error of a binary
classification problem which involves multiple classes.

In this paper, we propose training a low-dimensional kernel us-
ing semi-definite programming to maximize the margin between
same-speaker and different-speaker inner product scores of the high-
dimensional GMM mean supervector representation of utterances
in the training data. The advantages of this approach compared to
previous approaches include optimizing a discriminative criterion
which can be made directly related to any weighted sum of the false
alarm and the missing probabilities like the EER and the DCF ob-
jective functions. Also the estimation of the kernel is in a low-
dimensional space to reduce the required amount of training data and
the computational complexity associated with estimating the kernel.
This makes our approach more suitable to applications with limited
training data like speaker verification and speaker identification.

In the next section, we will formulate the problem and describe
our objective criterion. In Section 3, the details of estimating the
elements of the low-dimensional linear kernel to optimize our objec-
tive criterion are described. The experiments performed to evaluate
the performance of our approach are described in Section 4. Finally,
Section 5 contains a discussion of the results and future research.

In this paper, both vectors and matrices are in capital letters to
be distinguished from scalars. Matrices are in boldface to be distin-
guished from vectors.

2. PROBLEM FORMULATION

In this section, we will discuss how the problem of estimating the
linear kernel, which maximizes the margin between the model scores
for pairs of utterances belonging to the same speaker and for pairs
of utterances belonging to different speakers, can be reduced to an
instance of semi-definite programming problems.

Before score normalization, the output scores of most GMM-
based and generalized linear kernel SVM-based one-to-one match
speaker verification systems can be represented by some kind of gen-
eralized inner product of two vectors representing the verification
and the enrollment utterances.
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This can be described by the relation

s = E
T
KV, (1)

where E is the supervector representing the enrollment utterance,
V is the supervector representing the verification utterance, K is a
positive semi-definite matrix, and s is the score corresponding to this
pair of utterances. This representation can be more simplified to a
standard inner-product relation by the substitutions

Φe =
√

KE, (2)
Φv =

√
KV, (3)

to be

s = ΦT
e Φv . (4)

For a GMM based kernel, typically both Φe and Φv are vectors in a
high dimensional space of dimension equal to the product of the fea-
ture vector dimension and the number of Gaussian probability den-
sity functions in the universal background Gaussian mixture model.
Estimating a linear transform in such a space will be hindered by
such problems as data scarcity, training overfitting, and computa-
tional complexity. To avoid these problems, we choose to represent
our vectors as m × n matrices, where m and n are arbitrary di-
mensions such that the product of the two dimensions of the matrix,
m × n, is equal to the dimension of the mean supervectors Φe and
Φv . The score s is related to these two matrices using the relation

s = tr
h
X

T
Y

i
, (5)

where tr [.] is the trace of the matrix,X andY are them×nmatrix
representations of the supervectors Φe and Φv respectively.

Our goal is to introduce a positive semi-definite matrixMwhich
is estimated by maximizing the margin between scores correspond-
ing to pairs of utterances of the same speaker and those correspond-
ing to pairs of utterances of different speakers. The scores generated
by our system become

s = tr
h
X

T
MY

i
, (6)

whereM is anm × m matrix.
Therefore it can be shown by following the same steps for deriv-

ing the optimization problem for soft-margin SVM classifiers, [8],
that our objective function to be minimized is

O(M) = α||M||F + λ

pX
i=1

ζi + γ

qX
d=1

ζd (7)

subject to the constraints

M ≥ 0, (8)

tr
h
X

iT
MY

i
i

≥ β − ζi (9)

for i = 1, 2, . . . , p,

tr
h
X

iT
MY

j
i

≤ −β + ζd (10)

for d = 1, 2, . . . , q and i �= j,

ζi ≥ 0 for i = 1, 2, . . . , p, (11)
ζd ≥ 0 for d = 1, 2, . . . , q, (12)

where ||M||F is the Frobenius norm of the matrix M and is given
by

||M||F =
p

tr [MMT ] (13)

=

vuut
mX

i=1

mX
j=1

m2

ij . (14)

Here,mij is the element of matrixM in row i and column j,Xi is a
matrix representation of an utterance from speaker i,Yj is a matrix
representation of an utterance from speaker j, M ≥ 0 means that
M is a positive semi-definite matrix, α is the weight of the Frobe-
nius norm of the matrix M, ζi is the same-speaker slack variable
fot the ith same-speaker utterance pair, ζd is the different-speaker
slack variable fot the dth different-speaker utterance pair, p is the
number of utterance pairs in the training data which belong to the
same speaker, q is the number of utterance pairs in the training data
which belong to different speakers, λ is the weight assigned to the
term corresponding to the sum of the same-speaker slack variables,
γ is the weight assigned to the term corresponding to the sum of
the different-speaker slack variables, and β is a control variable to
improve the numerical stability of the optimization problem.

Making use of the fact that the sum in Eq. 14 is usually dom-
inated by the diagonal elements, we replace the Frobenius norm of
the matrixM in Eq. 7 with the trace norm of the matrixM to sim-
plify the optimization problem. Also taking into consideration that

tr [AB] = tr [BA] , (15)

the objective function becomes

O(M) = αtr [M] + λ

pX
i=1

ζi + γ

qX
d=1

ζd (16)

subject to the constraints

M ≥ 0, (17)

tr
h
MY

i
X

iT
i

≥ β − ζi (18)

for i = 1, 2, . . . , p,

tr
h
MY

j
X

iT
i

≤ −β + ζd (19)

for d = 1, 2, . . . , q and i �= j,

ζi ≥ 0 for i = 1, 2, . . . , p, (20)
ζd ≥ 0 for d = 1, 2, . . . , q. (21)

The values of the matrices Y
j
X

iT and Y
j
X

iT in the margin
constraints are mean normalized by removing the mean of their val-
ues over all the training utterance pairs.

3. IMPLEMENTATION

In this section, we present our implementation of the approach de-
scribed in the previous section. Our goal is to calculate the elements
of the weighting matrixMwhich minimize the objective function in
Eq. 16 subject to the constraints in Equations 17- 21.

For all utterances in the development data, a mean based super-
vector is generated. For Gaussian mixture models (GMMs), a useful
supervector is established by concatenating a vector function of the
Gaussian means into a supervector. A GMM with c mixture compo-
nents is used to construct the high-dimensional supervectors for the
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enrollment utterance,Φe , and the verification utterance, Φv . These
supervectors are constructed as follows

Φi =
√

wiΣ
−

1

2

i

“
μ

adapt
i − μ

ubm
i

”
, (22)

Φ =
h
ΦT

1 ΦT
2 . . . ΦT

c

iT

, (23)

where wi is the weight of the ith Gaussian component in the GMM,
μ

adapt
i is the MAP adapted mean for this component, μubm

i is the
universal background model (UBM) mean for this component, and
Σi is the diagonal covariance matrix of the ith Gaussian component
in the GMM. We use the single iteration MAP adaptation presented
by Reynolds [9] to generate the utterance specific adapted means,n

μ
adapt

i

o
, from the UBM means,

˘
μubm

i

¯
.

For one set of experiments, the mean GMM based supervectors
are NAP-compensated [6]. To determine the NAP subspace, the
high-dimensional feature space directions with the greatest intra-
class variability were used [5]. Let there be a series of nuisance
directions described by a column-wise eigenvector matrix, V. The
nuisance directions may be removed from an utterance representa-
tion, Φ, using the following equation

Φ̂ = (I− VV
T )Φ, (24)

where Φ̂ is the NAP-compensated supervector, I is the identity ma-
trix, and Φ is the supervector before the NAP compensation. Af-
ter applying the subspace removal to both the enrollment and the
verification supervectors, the NAP-compensated vectors were then
used directly within an inner product scoring metric and the NAP-
compensated score is given by

ŝ = Φ̂T
e Φ̂T

v , (25)
= ΦT

e (I −VV
T )ΦT

v , (26)

since (I−VV
T ) is a projection matrix and therefore (I−VV

T ) =
(I− VV

T )2. These NAP-compensated scores are then normalized
by ZT-norm [3, 9] to determine the final output scores.

To estimate the elements of the matrix M which minimize the
objective function in Eq. 16 subject to the constraints in Eq. 17
to Eq 21, we used the C library for semi definite programming
(CSDP) [10]. The CSDP library is designed to handle constraint
matrices with general sparse structure. CSDP can handle inequality
constraints by converting them to equality constraints with additional
non-negative auxiliary variables. The positive semi-definite matrix
which the library tries to estimate to solve the optimization problem
in Eq. 16 to Eq 21 consists of three blocks: the M matrix and two
diagonal matrices which have on the diagonal the values of the slack
variables and the auxiliary variables to convert inequality constraints
to equality constraints. Therefore the dimensions of this three-block
matrix are (2p + 2q + m) × (2p + 2q + m).

4. EXPERIMENTS

The performance of the maximum margin linear kernel (MMLK)
system was evaluated on the common and the core conditions of the
NIST 2005 Speaker Recognition Evaluation (SRE) [11]. The ut-
terances consist of one side from approximately 5 minutes of a two
channel telephone conversation. This provides, on average, approx-
imately two and a half minutes of usable speech.

The development data set consists of a combination of audio
from the NIST 2004 speaker recognition database and the Switch-
board II Phase III corpora. The collection contains 4862 utterances:

2105 utterances of male speakers and 2757 of female speakers. The
total number of speakers in the development data is 978 speakers:
536 female speakers and 442 male speakers. Thus, on average, there
are almost 5 utterances per speaker to estimate the expected within-
class covariance matrix over all speakers in the development data for
our implementation of the NAP compensation.

The front-end features consist of 38 dimensional features forged
from 19 cepstral coefficients and their corresponding deltas. There
are 24 filters in the filter bank, over a frequency range of 125-3800
HZ, used to generate these cepstral coefficients. Feature warping
is applied to the resulting feature vectors [1]. Each utterance in
both the training and the testing data is represented by a GMM
mean based supervector of dimension 9728. This representation was
generated using a UBM of 256 Gaussian components using MAP
adaptation. The system performance was measured at two operating
points, namely in terms of the Equal-Error Rate (EER) and the min-
imum Detection Cost Function (DCF) as defined in the evaluation
plan [11].
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Fig. 1. Baseline and MMLK Results on the NIST05 Common Con-
dition.
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Two sets of experiments were conducted to test our technique.
In the first set of experiments, we used as a baseline the GMM sys-
tem which generates the scores for each pair of utterances using the
inner product of the corresponding GMM based mean supervectors.
ZT-Norm is applied to these scores to generate the final scores. For
the MMLK system, we estimated a kernel of dimensions 38 × 38,
(i.e. it has the same dimension as the original feature vector). A
held-out set of 1550 utterances from the development data was used
to tune the parameters in Equations 16 to 21; namely α, λ, β,
and γ. The final values were found by updating one parameter at
a time in relatively small steps until very small changes in perfor-
mance measured in DCF or EER on the held-out set were found.
The final value for α was 0.01, for λ was 1.05, for γ was 9.98, and
for β was 0.05. To balance the number of pairs of different-speaker
utterances and same-speaker utterances, we restricted the different-
speaker utterances to speakers of the same gender and within 20% of
the value of the average score. We removed outlier values from the
same-speaker utterances which had a score more than 50% larger or
smaller than the average score. As shown in Figure 1, the maximum
margin kernel method reduces the DCF objective function by 17.7%
relative and reduces the EER objective function by 11.7% relative
on the common condition subset of the NIST05 evaluation set. As
shown in Figure 2, the maximum margin kernel method reduces the
DCF objective function by 15.2% relative and reduces the EER ob-
jective function by 17.8% relative on the core condition subset of the
NIST05 evaluation test set.

After verifying the efficiency of our approach in the first setup,
we performed the experiments of the second setup with a baseline
that has the nuisance attribute projection applied to the GMM based
mean supervectors before generating the scores using an inner prod-
uct of the compensated supervectors and then applying ZT-Norm to
these scores to generate the final scores. In this setup, a maximum
margin linear kernel of dimensions 38 × 38 is estimated using the
NAP-compensated GMM-based mean supervectors. We generated
two sets of tuning parameters: one optimized on the DCF of the
held out data set, and the other is optimized on the EER of the held
out data set. The final values of the former are α = 0.01, λ = 1,
γ = 9.9, and β = 0.02. The final values for the latter are α = 0.01,
λ = 1, γ = 10.3, and β = 0.02. As shown in Table 1, the best
MMLK system reduces the DCF compared to the NAP-GMM base-
line system by 2.3% relative and reduces the EER compared to the
NAP-GMM baseline system by 5.7% on the common condition sub-
set of the NIST05 evaluation set. The results in Table 2 show that the
best MMLK system reduces the DCF compared to the NAP-GMM
baseline system by 2.1% relative and reduce the EER compared to
the NAP-GMM baseline system by 3.7% for the core condition sub-
set of the NIST05 evaluation set.

System min. DCF EER
NAP Baseline 0.01857 5.4136%
MMLKDCF-tuned 0.01814 5.40227%
MMLKEER-tuned 0.01851 5.1086%

Table 1. Comparison of the NAP-compensated Baseline and the
MMLK systems on the NIST05 Common Condition

5. CONCLUSIONS

In this paper, we examined an approach for optimizing a low-
dimensional linear kernel to maximize the margin between the in-

System min. DCF EER
NAP Baseline 0.019473 6.004%
MMLKDCF-tuned 0.019065 5.7819%
MMLKEER-tuned 0.019343 5.8174%

Table 2. Comparison of the NAP-compensated Baseline and the
MMLK systems on the NIST05 Core Condition

ner product scores corresponding to pairs of utterances of the same
speaker and those corresponding to pairs of utterances of different
speakers. We applied this approach to the NIST 2005 automatic
speaker verification task. This approach decreased the minimum
DCF by 17.7% and the EER by 11.7% compared to the ZT-Norm
GMM baseline system. We achieved also small gains in DCF and
EER compared to a NAP-compensated baseline system. This im-
provement may be attributed to emphasizing elements in the feature
vector which better discriminate between different speakers.

Further investigation of the performance of our approach on
other evaluation tasks will be our main goal.
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