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ABSTRACT

This paper proposes a new framework of speech synthesis based on
the Bayesian approach. The Bayesian method is a statistical tech-
nique for estimating reliable predictive distributions by marginaliz-
ing model parameters. In the proposed framework, all processes for
constructing the system can be derived from one single predictive
distribution which represents the basic problem of speech synthesis
directly. Using HMM as the likelihood function and assuming some
approximations, it can be regarded as an application of the varia-
tional Bayesian method to the HMM-based speech synthesis. Ex-
perimental results show that the proposed method outperforms the
conventional one in a subjective test.

Index Terms— HMM-based speech synthesis, variational
Bayesian method, prior distribution, cross validation, context clus-
tering

1. INTRODUCTION

Over the last few years, a statistical parametric speech synthesis
system based on hidden Markov models (HMMs) has grown in
popularity [1]. In the HMM-based speech synthesis, spectrum,
excitation and duration of speech are modeled simultaneously by
HMMs, and speech parameter vector sequences are generated from
the HMMs themselves. There are a number of contextual fac-
tors that affect spectrum, excitation and duration of speech (e.g.,
phone identity, accent, stress). In the HMM-based speech synthesis,
context-dependent models are typically used to capture these factors
[2]. Although a large number of context-dependent models can
capture variations in speech data, too many model parameters lead
to the over-fitting problem. Therefore, maintaining a proper bal-
ance between model complexity and the amount of training data is
required. The decision tree based context clustering [3] is a success-
ful method for context-dependent HMM estimation to deal with the
problem of training data insufficiency, not only for the robust param-
eter estimation but also for predicting probability distributions for
unseen contexts. This method constructs a parameter tying structure
which can assign a sufficient amount of training data to each HMM
state. A binary tree is grown step by step, by choosing a question
which divides the context using a greedy strategy to maximize some
objective function.

In the HMM-based speech synthesis, the maximum likelihood
(ML) criterion has been typically used for training HMMs and
generating speech parameters, and the minimum description length
(MDL) criterion has been typically employed to select the model
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structure [4]. However, the ML criterion produces a point estimate
of HMM parameters and accordingly the accuracy of estimation may
be reduced when small training data is available, and the MDL crite-
rion is based on the asymptotic assumption, therefore it is ineffective
when the amount of training data is small.

This paper proposes a new framework of speech synthesis based
on the Bayesian approach. In this framework, all processes for
constructing the system can be derived from one single predictive
distribution which represents the problem of speech synthesis di-
rectly. The Bayesian approach assumes that model parameters are
random variables and reliable predictive distributions are estimated
by marginalizing model parameters. However, estimation of pos-
terior distributions of latent variables lead to a huge computational
cost. The variational Bayesian (VB) method has been proposed as
an effective approximation method of the Bayesian approach [5] and
it shows a good performance in the HMM-based speech recognition
[6]. In the context clustering, since the Bayesian approach does not
use an asymptotic assumption, it is available even in the case where
the amount of training data is small. In the Bayesian approach,
an appropriate model structure can be selected by maximizing the
marginal likelihood [6, 7]. The Bayesian approach can use prior
information which is represented by prior distributions. Since the
prior distributions affect the model selection, the determination of
prior distributions is an important problem for estimation of appro-
priate acoustic models. However, prior information is not generally
given in most speech synthesis tasks. This paper applies a prior dis-
tribution determination technique using the cross validation to the
context clustering [8]. The Bayesian approach using cross validation
can select an appropriate model structure without tuning parameters
of prior distribution. The rest of this paper is organized as follows.
Section 2 describes the new framework for speech synthesis based
on the Bayesian approach. In Section 3, subjective listening test
results are presented. Concluding remarks and future plans are
presented in final section.

2. BAYESIAN SPEECH SYNTHESIS

2.1. Bayesian approach

Let O = (O1, O2, . . . , OT ) be a set of training data of D dimen-
sional feature vectors, and T denotes the number of frames. The
output probability of an HMM is defined by:

P (O, Q | Λ) =

TY
t=1

aQt−1QtN (Ot | μQt , S
−1
Qt

) , (1)

where Q = (Q1, Q2, · · · , QT ) is a sequence of HMM states, zt ∈
{1, . . . , N} denotes a state at frame t and N is the number of states
in an HMM. A set of model parameters Λ = {aij , μi, Si}N

i,j=1

consists of the state transition probability aij from state i to state j,

4029978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



the mean vector μi and the covariance matrix S−1
i of a Gaussian

distribution N (· | μi, S
−1
i ).

In the HMM-based speech synthesis, the ML criterion has been
typically used to train HMMs and generate speech parameters. The
optimal model parameters can be obtained by maximizing the likeli-
hood for a given training data as follows:

ΛML = arg max
Λ

P (O | S,Λ) , (2)

where S is a label sequence of training data. Since it is difficult to
analytically obtain the model paramter ΛML, the model parameter
can be obtained using an iterative procedure such as the expectation-
maximization (EM) algorithm. In the synthesis part, the speech pa-
rameter generation algorithm generates sequences of speech param-
eter vectors that maximize their output probabilities using model pa-
rameters ΛML.

oML = arg max
o

P (o | s,ΛML) , (3)

where o =
ˆ
o�

1 , o�
2 , . . . , o�

T

˜�
is a speech parameter sequence and

s is a label sequence to be synthesized,

However, the ML estimator produces a point estimate of HMM
parameters and the accuracy of estimation may be reduced when the
amount of training data is small. The Bayesian approach assumes
that a set of model parameters Λ is a random variable, while the
ML approach estimates constant model parameters. In the Bayesian
approach, the speech parameter is generated by the predictive distri-
bution [7] as follows:

oBayes = arg max
o

P (o | s, O, S)

= arg max
o

P (o, O | s, S) . (4)

It can be seen that equation (4) directly represents the problem of
speech synthesis, that is, generating speech feature sequence o given
training feature sequences O with labels S and labels to be synthe-
sized s. The marginal likelihood of o and O is defined by

P (o, O | s, S)

=
X

q

X
Q

Z
P (o, q, O, Q,Λ | s, S)dΛ

=
X

q

X
Q

Z
P (o, q | s,Λ)P (O, Q | S,Λ)P (Λ)dΛ , (5)

where q is a sequence of HMM states for a speech parameter
sequence o, P (Λ) is a prior distribution for model parameter
Λ, P (o, q | s,Λ) is the likelihood of synthesis data o, and
P (O, Q | S,Λ) is the likelihood of training data O. The model
parameters are integrated out in equation (5) so that the effect of
over-fitting is mitigated. However, it is difficult to solve the integral
and expectation calculations. Especially, when a model includes
latent variables, the calculation becomes more complicated. To
overcome this problem, the variational Bayesian method has been
proposed as a tractable approximation method of the Bayesian ap-
proach and it has shown good generalization performance in many
applications [5].

2.2. Variational Bayesian method

The variatonal Bayesian method maximizes a lower bound of log
marginal likelihood F instead of the true marginal likelihood. A
lower bound F is defined by using Jensen’s inequality:

logP (o, O | s, S)

= log
X

q

X
Q

Z
P (o, q, O, Q,Λ | s, S)dΛ

= log
X

q

X
Q

Z
Q(q, Q,Λ)

P (o, q, O, Q,Λ | s, S)

Q(q, Q,Λ)
dΛ

≥
fi

log
P (o, q, O, Q,Λ | s, S)

Q(q, Q,Λ)

fl
Q(q,Q,Λ)

= F (6)

where, 〈·〉Q denotes a calculation of expectation with respect to Q,
and Q(q, Q,Λ) is an approximate distribution of the true posterior
distribution P (q, Q,Λ | Wx, O, s, S). The variational Bayesian
method uses the assumption that probabilistic variables associated
with q, Q,Λ are statistically independent of the other variables.

Q(q, Q,Λ) = Q(q)Q(Q)Q(Λ) (7)

In the VB method, VB posterior distributions Q(Q), Q(q) and
Q(Λ) are introduced to approximate the true posterior distributions.
The optimal VB posterior distributions can be obtained by maximiz-
ing the objective function F with the variational method as follows:

Q(q) = Cq exp 〈log P (Wx, q | s,Λ)〉Q(Λ) , (8)

Q(Q) = CQ exp 〈log P (O, Q | S,Λ)〉Q(Λ) , (9)

Q(Λ) = CΛP (Λ) exp 〈log P (Wx, q | s,Λ)〉Q(q)

× exp 〈log P (O, Q | S,Λ)〉Q(Q) , (10)

where Cq , CQ and CΛ are the normalization terms of Q(q), Q(Q)
and Q(Λ), respectively. These optimizations can be effectively
performed by iterative calculations as the EM algorithm, which
increases the value of objective function F at each iteration until
convergence.

However, in the above algorithm, the optimal posterior distri-
butions depend on synthesized speech parameter o, i.e., the poste-
rior distributions given a label sequence of synthesis speech are es-
timated. Consequently, it leads to a huge computational cost in the
synthesis part. To avoid this problem, this paper assumes that Q(Λ)
is independent of speech parameter o. Then, Q(Λ) is given by

Q(Λ) = CQP (Λ) exp 〈log P (O, Q | S,Λ)〉Q(Q) . (11)

2.3. Bayesian context clustering
The decision tree based context clustering is a top-down clustering
method to optimize the state tying structure for robust model pa-
rameter estimation. A leaf of the decision tree corresponds to a set
of HMM states to be tied. The decision tree growing process be-
gins with a root node which has all HMM states to be tied. Then,
a question which divides the set of states into two subsets assigned
respectively to two child nodes, “Yes” node and “No” node, is cho-
sen so as to maximize the value of objective function. The decision
tree is grown in a greedy fashion, successively splitting nodes by se-
lecting the pair of a question and node which maximize the gain of
objective function at each step. In the HMM-based speech synthesis,
model parameters of spectrum, excitation, and duration are clustered
separately because they have their own influential contextual factors.

In the Bayesian approach, an optimal model structure can be
selected by maximizing the objective function F [6]. When a node
is split into “Yes” node and “No” node by the question q, the gain
ΔFq is defined as the difference of F before and after splitting:
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ΔFq = Fy
q + Fn

q −Fp
q , (12)

where Fy
q and Fn

q are the value of objective function F of split
nodes by a question q, and Fp

q is the value before splitting. The
question q̂ for splitting a node is chosen from the question set as
follows:

q̂ = arg max
q

ΔFq. (13)

By splitting nodes until ΔFq̂ ≤ 0, the decision tree which maxi-
mizes the objective function F is obtained.

2.4. Bayesian context clustering using cross validation
In the Bayesian approach, prior distributions are usually determined
heuristically. However, hyper-parameters (parameters of prior distri-
butions) affect the model selection as tuning parameters. Therefore,
to automatically select an appropriate model structure, a determi-
nation technique of prior distribution is required. One possible ap-
proach is to optimize the hyper-parameters using training data so as
to maximize the marginal likelihood. However, it still needs tuning
parameters which control influences of prior distributions, and often
leads to the over-fitting problem as the ML criterion. To overcome
this problem, the prior distribution determination technique using
cross validation has been proposed [8]. In this paper, we apply it to
the context clustering for the HMM-based speech synthesis.

Let O = {O(1), O(2), · · · , O(k), · · · , O(K)} be a set of

training data and O(k) be a partition for K-fold cross valida-

tion. For the k-th evaluation, O(k̄) = {O(j) | j �= k} is used

for the determination of prior distributions and O(k) is used for
the estimation of posterior distributions. Then, the Bayesian ap-
proach using cross validation calculates the log marginal likelihood

log P (o, O(k) | O(k̄), s, S). Using Jensen’s inequality, the lower

bound of log marginal likelihood F (k) is defined as equation (6):

log P (o, O(k) | O(k̄), s, S) ≥ F (k) . (14)

For the k-th evaluation, the optimal VB posterior distributions of
model parameters can be obtained by maximizing F (k) with respect
to Q(Λ(k)) with the variational method as follows: For the k-th eval-
uation, the optimal VB posterior distributions of model parameters
can be obtained by maximizing F (k) with respect to Q(Λ(k)) with
the variational method as equation (11):

Q(Λ(k)) = CΛ(k)P (Λ(k) | O(k̄))

×
D
log P (O(k), Q(k) | Λ(k))

E
Q(Q(k))

, (15)

where P (Λ(k)| O(k̄)) is a prior distribution which represents prior

information O(k̄) and CΛ(k) is a normalization term.
In the Bayesian approach, a conjugate prior distribution is

widely used as a prior distribution. When the output probability dis-
tribution is a Gaussian distribution, the conjugate prior distribution
becomes a Gauss-Wishart distribution:

P (μ, S) = N (μ | ν, (ξS)−1) W(S | η, B) , (16)

where {ξ, η, ν, B} is a set of hyper-parameters. Moreover a Gaus-
sian distribution is proportional to Gauss-Wishart distribution as fol-
lows:

TY
t=1

N (Ot | μ, S−1)

∝ N (μ | Ō, (TS)−1) W(S | T + D, (T C̄) ) , (17)

where Ō = 1
T

PT
t=1 Ot and C̄ = 1

T

PT
t=1 OtO

�
t − ŌŌ� are

sufficient statistics of training data. Thus, the prior distribution
can be determined by sufficient statistics of the prior information.
The prior distribution of the k-th cross validation model parameters

P (μ(k), S(k) | O(k̄)) is obtained from equation (17):

P ( μ(k), S(k) | O(k̄))

= N (μ(k) | Ō(k̄), (T (k̄)S(k))−1)

×W(S(k) | T (k̄) + D, (T (k̄)C̄(k̄))) , (18)

where Ō(k̄) and C̄(k̄) are sufficient statistics of a subset of train-
ing data O(k̄). The cross valid prior distribution can be determined
without tuning parameters. In the HMM-based speech synthesis,
the multi-space probability distribution HMMs (MSD-HMMs) [10]
have been used to model excitation. However, the cross valid prior
distributions for the MSD-HMMs can be determined by using suffi-
cient statistics of each space as equation (18).

The objective function of the Bayesian approach using cross val-
idation F (CV ) is obtained by summing F (k) for each fold:

F (CV ) =

KX
k=1

F (k) . (19)

An optimal model structure can be selected by maximizing the ob-
jective function F (CV ) instead of F . As equation (13), the question

which maximizes the gain of the objective function ΔF (CV )
q is se-

lected. By splitting nodes until ΔF (CV )
q̂ ≤ 0, the decision tree

which maximizes the objective function F (CV ) is obtained.

3. EXPERIMENTS

3.1. Experimental conditions
To evaluate the performance of the proposed method, speech syn-
thesis experiments were performed. In these experiments, the ATR
Japanese speech database [9] B-set which consits of the phoneti-
cally balanced 503 sentences were used. The first 450 of the 503
sentences, uttered by one male speaker (MHT), were used for train-
ing. The remaining 53 sentences were used for evaluations. Speech
signals were sampled at a rate of 16 kHz and windowed at a 5 ms
frame rate using a 25 ms Blackman window. Feature vectors con-
sisted of spectrum and F0 parameter vectors. The spectrum param-
eter vectors consisted of 24 mel-cepstral coefficients excepting the
zero-th coefficients and their delta and delta-delta coefficients. The
F0 parameter vectors consisted of log F0, its delta and delta-delta.
A left-to-right, five-state, MSD-HMM with no skip structure was
used. Each state output PDF was composed of spectrum and F0

streams. The spectrum stream was modeled by single multi-variate
Gaussian distributions with diagonal covariance matrices. The F0

stream was modeled by a multi-space probability distribution con-
sisting of a Gaussian distribution for voiced frames and a discrete
distribution for unvoiced frames. Each state duration PDF was mod-
eled by a one-dimensional Gaussian distribution.

The decision tree-based context clustering technique was sepa-
rately applied to distributions of spectrum, F0, and state duration.

In these experiments, the following four approaches were com-
pared.

• “ML-MDL” : HMMs were trained by the ML criterion and
model structures were selected by the MDL criterion.

• “Bayes-Bayes” : HMMs were trained by the Bayesian cri-
terion and model structures were selected by the Bayesian
criterion with cross validation.
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Table 1. Number of states of selected model structure by the con-
ventional and proposed methods.

mel-cepstram F0 duration

ML-MDL 956 1,151 280

Bayes-Bayes 9,070 12,836 4,005

Bayes-MDL 1,941 565 47

ML-Bayes 15,077 8,844 3,185

 2.6

 2.8

 3.0

 3.2

 3.4

ML-MDL

M
O

S

95% confidence intervals

 3.07

Bayes-Bayes

 3.20

Bayes-MDL

 3.03

ML-Bayes

 2.99

Fig. 1. Mean opinion scores of synthsized speech by the conven-
tional and proposed methods. Error bars show 95% confidence in-
tervals.

• “Bayes-MDL” : HMMs were trained by the Bayesian crite-
rion and model structures were selected by the Bayesian crite-
rion with cross validation. In the context clustering, splitting
nodes was performed by the Bayesian criterion with cross
validation, and stopping criterion was adjusting a threshold
to make model structures which have the similar number of
states with “ML-MDL.”

• “ML-Bayes” : HMMs were trained by the ML criterion and
model structures were selected by the MDL criterion using
threshold. In the context clustering, splitting nodes was per-
formed by the MDL criterion, and stopping criterion was ad-
justing a threshold to make model structures which have the
similar number of states with “Bayes-Bayes.”

In “Bayes-Bayes” and “Bayes-MDL,” each context is regarded as 1-
fold of the cross validation. The number of states for each method
is “ML-MDL”:2,491 , “Bayes-Bayes”:25,911 , “Bayes-MDL”:2,553
, “ML-Bayes”:27,106. Table 1 represents the details of the number
of states.

3.2. Experimental results
A subjective listeing test was conducted to evaluate quality of syn-
thesized speech. The test compared the naturalness of converted
speech by the mean opinion score (MOS) test method. The sub-
jects were 10 Japanese graduate students. Twenty sentences were
randomly chosen from the evaluation sentences. Samples were pre-
sented in a random order for each test sentence. In the MOS test,
after listening to each test sample, the subjects were asked to assign
it a five-point naturalness score (5: natural – 1: poor).

Figure 1 plots the experimental results. It can be seen from the
figure that the proposed method “Bayes-Bayes” achieved a better
subjective score than the conventional method “ML-MDL.” More-
over, although “Bayes-MDL” is trained by the Bayesian criterion,

the subjective score of “Bayes-MDL” was worse than “Bayes-
Bayes,” and although “ML-Bayes” has the similar number of states
as “Bayes-Bayes,” the subjective score of “ML-Bayes” was worse
than “Bayes-Bayes.” Because the model structure of “ML-Bayes”
is too big for the ML training, “ML-Bayes” leads to the over-fitting
problem. Thus, the error bar of “ML-Bayes” in Figure 1 are larger
than others. These results cleary show the effectiveness of the
proposed method in both the model training and model structure
selection. Most of the subjects observed that the proposed method
improved the naturalness in spectrum and excitation.

4. CONCLUSION
This paper proposed the new framework of speech synthesis based
on the Bayesian approach. In the proposed framework, all processes
for constructing the system could be derived from one single predic-
tive distribution which represents the problem of speech synthesis
directly. The results on the MOS test demonstrated that the proposed
method outperform the conventional one.

Future works include applying the Bayesian approach to hidden
semi-Markov model (HSMM) based speech synthesis and research
of the relation between the quality of synthesized speech and the size
of model structure.
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