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ABSTRACT

In this paper, we present a statistical parametric speech synthesis sys-
tem based on the polynomial segment model (PSM). As one of the
segmental models for speech signals, PSM explicitly describes the
trajectory of the features in a speech segment, and keeps the internal
dynamics of the segment. In this work, spectral and excitation pa-
rameters are modeled by PSMs simultaneously, while the duration
for each segment is modeled by a single Gaussian distribution. A
top-down K-means clustering technique is applied for model tying.
Mean trajectories acquired from PSMs are used directly to gener-
ate speech parameters according to the estimated segment duration.
An English speech synthesizer back-end is implemented on CMU
Arctic corpus and the performance of the new approach is compared
with the classical HMM-based one. Experimental results show that
PSM modeling can achieve similar naturalness and intelligence of
the synthetic speech as HMM modeling. The system is in the early
stage of its development.

Index Terms— Hidden Markov Model, Polynomial Segment
Model, statistical parametric speech synthesis, mean trajectory

1. INTRODUCTION

The HMM-based parametric speech synthesis technique (HTS) has
been proposed in recent years and it shows to be very effective in
generating acceptable speech [1][2]. In the HTS system, spectrum,
pitch and duration can be modeled simultaneously in a unified frame-
work of HMM and parameters are generated using dynamic features
from HMMs under maximum likelihood criterion [3]. HTS is able
to synthesize highly intelligible and smooth speech. Much recent
research has been done under the HMM framework to improve the
quality of generated speech and many achievements have been made
[4].

However, the three limitations of HMM modeling in continuous
speech still exist: the weak duration modeling, the conditional inde-
pendence assumption of observations given the state sequence, and
the restrictions on feature extraction imposed by frame-based ob-
servations [5]. Many works were carried out to alleviate the above
limitations [3][6]. The ideas use features from segments rather than
frames, deriving many different models, such as conditional Gaus-
sian HMMs, Stochastic Segment Model (SSM) and Polynomial Seg-
ment Model (PSM) [7], etc. In the work of Ostendorf et al [5] a gen-
eral segment model was defined to cover the different modeling as-
sumptions. Segment models can be thought of as higher dimensional
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versions of HMM, where Markov states generate random sequences
rather than a single random vector observation. These higher order
models tend to consume more computational cost than the standard
HMM, especially in Large Vocabulary Continuous Speech Recog-
nition (LVCSR). Compared with speech recognition tasks, speech
synthesis knows the state sequence. The high-complexity decoding
process is not required in speech synthesis tasks. This makes on-
line usage of the segment model for speech synthesis feasible. Dines
introduced trended HMM to speech synthesis [8], but it is hard to
estimate many polynomial parameters for each HMM state. Further-
more, reliable state-level manual segmentation is not widely avail-
able.

In this paper, the Polynomial Segment Model is explored to cap-
ture the temporal correlations within a phonetic segment for the para-
metric speech synthesis. The spectral and excitation parameters for
each speech segment are modeled by PSMs simultaneously and the
duration of a segment is modeled by a single Gaussian. A top-down
K-means clustering technique [9] is used to tie similar models to-
gether. During the procedure of parameter generation, the mean tra-
jectories of PSMs are used. A PSM-based speech synthesis back-end
is built up to investigate the performance of PSM modeling.

The rest of this paper is organized as follows: Section 2 de-
scribes model training and parameter generation algorithms for
PSMs. The framework of PSM-based speech synthesis system is
described in section 3 and experiments are covered in Section 4.
Concluding remarks and some discussion of our future work are
presented in the final section.

2. PSM TRAINING AND PARAMETER GENERATION
ALGORITHMS

A Polynomial Segment Model, can be defined as,

C = ZNB + E, (1)

where C is a N × D matrix for N frames of D dimensional
feature vectors. B is a (R+1)×D coefficient matrix of a Rth order
trajectory model and E is the residual error with the same size as
matrix C. ZN is a N × (R+1) time normalization matrix, which is
used to map segments of different durations into a range of between
0 and 1.

2.1. Parameter estimation using existing segmentation

As described in [10], given a set of K segments S = C1, ..., Ck of
model m, the maximum likelihood estimate of the PSM parameter

matrix B̂m and residue covariance Σ̂m are given by
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and

Σ̂m =

PK
k=1(Ck − ZNk B̂m)T (Ck − ZNk B̂m)

PK
k=1 Nk

. (3)

2.2. Log likelihood evaluation

The likelihood of segment Cj against model m can be computed by
accumulating the observation likelihoods one at a time, against the
corresponding sampling point on the Polynomial Segment Model.
The log likelihood, L(Cj |m), with a detailed description given in
[7], can be written as

L(Cj |m) = −Nj

2
[Dlog(2π) + log|Σ̂m|]

− 1

2
tr[(Cj − ZNj B̂m)Σ̂−1

m (Cj − ZNj B̂m)T ].

(4)

2.3. Viterbi-style segmentation and training algorithms

In segment models, segmental boundaries play an important role.
Two methods could be used to get the initial segmentation: hand-
crafted segmentation or HMM-based forced alignment. Usually,
handcrafted segmentation is time-consuming and unfeasible for sub-
phoneme level. There are inconsistencies between the segment mod-
eling mechanism and the results from HMM-based forced alignment
which is optimized for a standard HMM scheme. In order to get a
more accurate segment boundary, the HMM-based aligning method
is generalized to form new viterbi-style segmentation and training
algorithms for PSM. Boundaries from HMM forced alignment can
be used as initialization. To lower the computing complexity, some
constraints are applied to reduce the search space. In the following
parts, the segmentation and training algorithms are presented respec-
tively.

Define Y T
1 = {y1, y2, ..., yT } to be a T-length observation

sequence, which is connected to an N-length phone sequence
AN

1 = {a1, a2, ..., aN}. Each phone in the sequence is corre-
sponding to a PSM, and the whole PSM sequence is defined by
MN

1 = {m1, m2, ..., mN}. The end boundary sequence is repre-
sented by BN

1 = {b1, b2, ..., bN}. For each boundary in BN
1 , a

candidate boundary set which may contain the underlying accurate
boundary is extended from the current boundary by adding a win-
dow. The window size d can be adjusted manually. Then the candi-
date boundary set for each phone in the sequence can be represented
by TBj : {bj − d

2
, bj − d

2
+1, bj − d

2
+2, ..., bj + d

2
}, j = 1, .., N .

L(Cj |m) = log p(Y jL
j1

|m) is used to describe the log likelihood of
a segment Cj against the model m, where Cj = {yj1 , yj2 , ..., yjL},
represented a L-length observation segment in Y . Finally, define
δt(j) to be the log probability of the most likely segmentation se-
quence ending at frame t for observations Y t

1 = {y1, y2, ..., yt}
given the label sequence Aj

1 = {a1, a2, ..., aj}. The trace back
information is stored in Ψt(j). The dynamic programming PSM-
based segmenting algorithm can be described as follows:

(a) Initialize:
for j = 1,

δt(a1) = log p(Y t
1 |m1), ∀t ∈ TB1, (5)

Ψ(a1) = 0, (6)

(b) Iterate:
for j = 2, ..., N − 1,

δt(aj) = max∀τ∈TBj−1{δτ (aj−1)

+ log [p(yt
τ+1|mj)p(aj |aj−1)]},

∀t ∈ TBj ,

(7)

Ψ(aj) = arg max∀τ∈TBj−1{δτ (aj−1)

+ log [p(yt
τ+1|mj)p(aj |aj−1)]},

∀t ∈ TBj ,

(8)

for j = N ,

δt(aN ) = max∀τ∈TBN−1{δτ (aN−1)

+ log [p(yT
τ+1|mN )p(aN |aN−1)]}

(9)

Ψ(aN ) = arg max∀τ∈TBN−1{δτ (aN−1)

+ log [p(yt
τ+1|mN )p(aN |aN−1)]},

(10)

(c) Trace back:

BN = T,

Bj = Ψ(aj), forj = N − 1, N − 2, ..., 1.
(11)

After the boundaries of segments are refined, the PSM of each
phoneme in the phone set can be estimated according to equation (2)
and (3), as described in 2.1. Define delta to be the allowed minimum
difference of two iterations of segmentation process, and I is the
maximum iterating times which can be set manually. The viterbi-
style PSM training algorithm can be described as follows:

(a) For each phone a in the model list, process all sentences in

the corpora with transcription and segmentation, estimate B̂a and

Σ̂a using equation (2) and (3);

(b) For i = 1, 2, ...I , refine the segmentation of the speech data
using current PSMs, summate δT (N) of all sentences and record the
summation in S(i);

(c) If S(i) − S(i − 1) > delta, go to (b), else terminate the
program.

2.4. Parameter generation algorithm

When the label sequence of an utterance to be synthesized is given,
a PSM model sequence can be established. The durations are es-
timated by Gaussian models. For each phone a in the model set,
a Polynomial Segment Model m is described by a pair of matrix

{B̂m, Σ̂m}. represents the polynomial coefficients, and Σ̂m is a
global covariance for each frame in the segment. The mean trajec-
tory can be estimated as follows,

Ĉm = ZN B̂m (12)

where ZN is a design matrix that is known if the segment duration
N is given. The mean trajectories of each model are used to generate
speech parameters directly.
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Fig. 1. Overview of a PSM-based speech synthesis system.

3. FRAMEWORK OF PSM-BASED SPEECH SYNTHESIS
SYSTEM

The framework of PSM-based speech synthesis system, including
the training part and the synthesis part, is shown in Figure 1.

In the training part, both spectrum (Mel-Generalized Cepstrum-
based Line Spectrum Pair [11]) and excitation parameters (logF0)
are extracted from the speech database and modeled by context-
dependent PSMs. Each PSM has a single Gaussian duration den-
sity to model the temporal structure of speech segment, which is
called PSM-based Duration Modeling (PDM) in this work. Then
the K-Means based clustering method is used to tie similar models
together.

In the synthesis part, a given text is converted to a context-
dependent label sequence firstly and then the PSM sequence of the
utterance is constructed by concatenating the context-dependent
PSMs according to the label sequence. Then, durations of the PSMs
are determined using the duration models, and speech parameters are
generated directly from the mean trajectories of the PSM sequence.
Finally, a speech waveform is reproduced from the generated spec-
tral and excitation parameters using the MLSA filter with binary
pulse or noise excitation.

It is worth noting that the segmental boundaries we get from
automatic segmentation may be not exactly the voiced − unvoiced
boundaries, so it is hard to model logF0 accurately under PSM
framework. The value of unvoiced logF0 is set as the probable
minimum logF0 .

4. EXPERIMENTS AND EVALUATIONS

4.1. Experiments description

CMU ARCTIC corpus, which includes 1132 phonetically balanced
sentences, was used to build our systems with 1112 for training and
the other 20 for testing. Speech signals were windowed with a 5ms
shift, and MGC-LSP coefficients and logF0 parameters were ob-
tained by speech analysis tools.

HMM and PSM were used respectively for speech parameter
modeling. For HMM modeling, speech parameters consisted of
25-order MGC-LSP coefficients, logF0 parameters, their delta and
delta-delta coefficients. A 5-state left-to-right HMM with single

segment boundary

Fig. 2. Original, HMM and PSM based MGC-LSP sequences.

diagonal Gaussian output distribution was selected as the model
structure. HMM with multi-space distributions was used for F0

modeling. The decision tree based model clustering technique was
applied to the context-dependent phoneme models for state tying.
For PSM modeling, speech parameters contained the coefficients
of the 25-order MGC-LSP and logF0 without dynamic coefficients.
The polynomial order is set to 4. 9652 triphone PSMs were trained
firstly using viterbi-style training algorithm and then clustered into
2672 models using K-means clustering algorithm. HSMM and PDM
were used separately for duration modeling. As a result, totally six
kinds of models were trained for speech generation: HMM-based
MGC-LSP models, HMM-based logF0models, PSM-based MGC-
LSP models, PSM-based logF0 models, HSMM-based duration
models and PDMs.

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

HMM

PSM

ORI

Fig. 3. Original,HMM-based and PSM-based MGC-LSP spectrum.

4.2. Comparison of spectrum

To compare the spectrum simulating performance of these two mod-
eling methods, only MGC-LSP models were used for generation
while logF0 and duration were derived from the original speech pa-
rameters. Figure 2 shows a time sequence of the 2nd MGC-LSP
parameters of an utterance “Her face was against his breast” ex-
tracted from original speech and that generated respectively from
HMMs and PSMs. It can be observed that PSM modeling can re-
construct more spectral details within speech segments than HMM
modeling. Figure 3 gives an example of spectrum sequences of
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generated speech with HMM-based method, generated speech with
PSM-based method and original speech. It can be seen that PSM-
based method makes generated spectral peaks relatively sharper than
HMM-based method. Therefore, by looking at speech on a segmen-
tal level rather than on a frame-by-frame basis, we can better capture
the temporal structure over the duration of a phone sequence.

4.3. Perceptual evaluation

An ABX opinion test on the naturalness of synthetic speech was
conducted to investigate the effects of new modeling for MGC-LSP,
logF0 and duration. Six voices, shown in Table 1, were divided into
three pairs and evaluated. “Original” means the related parameters
were derived from the original speech. Five trained listeners partic-
ipated in the test. The sentences were selected from the test set and
sent to each listener in a random order.

MGC modeling logF0 modeling Duration modeling
A HMM Original Original
B PSM Original Original
C PSM Original HSMM-based
D PSM Original PDM
E PSM HMM PDM
F PSM PSM PDM

Table 1. Synthetic voices used for an opinion test.

6 2 .8 %

3 2 .0 %

4 6 .2 %

B

EF

CD

A

0 2 0 4 0 6 0 8 0

3 7 .2 %

5 3 .8 %

6 8 .0 %

Fig. 4. Preference score of PSM against HMM method.

Figure 4 shows the results of the test. It is observed that PSM
modeling can achieve relatively better performance for spectrum
than HMM modeling (B vs A). However, PSM modeling for F0

shows to be bad and deteriorates the overall performance of the sys-
tem (F vs E). PDM is worse than HSMM-based duration modeling
but the gap is not very large (D vs C).

The poor performance of PSM-based F0 modeling may be due
to the awkward processing of unvoiced regions in segments. It is
worthy to check the pitch modeling method further under the PSM
framework. Another possible reason for the performance deteriora-
tion of PSM-based synthesis approach is that no appropriate mech-
anism is present for PSM to describe the correlation between two
neighboring segments. It may lead to discontinuities of synthetic
parameters on segment boundaries (as shown in Figure 2). In our
experiments, it is found that PSM performed better for long dura-
tion segments than short segments. If too many short segments are
included in a sentence, they could ruin a listener’s flow.

5. CONCLUSION

In this paper, a Polynomial Segment Model based speech synthe-
sis approach was proposed, in which speech spectrum and exci-
tation were modeled simultaneously in a unified PSM framework.
New viterbi-style segmentation and training algorithms are devel-
oped. Although the system is in its early stage, experimental re-
sults show that the PSM appears promising in describing the intra-

segmental correlations of time varying speech and deserves further
study.

More works are needed to improve the performance of the sys-
tem. Firstly, an extended forward-backward training algorithm can
be implemented to avoid the hard segmentation in viterbi-style train-
ing, which is also expected to address the problem of discontinuities
at segmental boundaries. Secondly, more detailed contexts (pho-
netic, linguistic, and prosodic contexts all taken into account) can
be used with a relatively larger database, and more advanced clus-
tering techniques such as decision tree based clustering can be im-
plemented. Thirdly, parameter generation algorithms other than the
mean trajectory can be investigated to use covariance and dynamic
features. Fourthly, voiced-unvoiced boundaries within a segment
need further study.
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