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ABSTRACT

In this paper we present a probabilistic algorithm that extracts a map-
ping between two subspaces by representing each subspace as a col-
lection of states. An arbitrary increase in number of states results in
over-fitting the training data without exploring the underlying struc-
ture of the map. This paper suggests a method to impose sparsity
constraints on the state map by using entropic priors.

This probabilistic model is applied to the problem of artificial
bandwidth expansion that involves estimating the missing frequency
components (3.7 – 8 kHz and 0 – 0.3 kHz) of speech given the nar-
rowband speech signal (0.3 – 3.7 kHz).

Index Terms— Bandwidth expansion, Signal reconstruction,
Sparse representation.

1. INTRODUCTION

Artificial Bandwidth Expansion (ABE) is a process of automated
addition for missing high frequency components to a bandlimited
speech signal. Various techniques have been proposed for this task
over the years. Listening tests have shown that the presence of high
frequency components in speech make it perceptually more pleasing
thereby improving its perceived quality [1]. Most of the techniques
focus on extending the bandwidth of a telephony (300Hz to 3700
Hz) signal producing a speech signal in the range 0Hz to 8000 Hz.
Artifact-free synthesized speech is one of the pivotal requirements
of a good ABE system.

Aliasing-based methods (e.g., [2]) employ a non-linear transfor-
mation to construct the absent high frequency components by alias-
ing low frequency components. Some methods [3, 4] use codebooks
to generate a map between the low and the missing high frequencies
of the spectrum. Methods such as [5] attempt to estimate missing
spectral components as a linear combination of the low frequency
components.

Statistical methods such as those proposed in [6, 7] model the re-
lationship between the lower and upper band frequency components
using Hidden Markov Models (HMM), Gaussian Mixture Models
(GMM) etc. The trained statistical models are then used to estimate
the missing frequency components.

In our previous work [6, 8], we have used Vocal Tract (VT) areas
to perform ABE. This method does not directly estimate the miss-
ing spectral components, but rather estimates the vocal tract area
function necessary for the production of the broadband speech. This
method uses a combination of codebook and statistical methods of
bandwidth extension.

In this paper we propose a method based on probabilistic map-
ping of subspaces that takes advantage of the inherent sparsity in the

system to generate an over-complete bases of the target subspace,
which can then be used to produce a MMSE estimate of the missing
frequency components.

The paper is organized as follows: Section 2 explains the es-
timation problem and the probabilistic space mapping algorithm.
Sections 3 presents the application of this algorithm to bandwidth
expansion. Section 4 presents the experiments used to evaluate the
performance of the system and the results. Section 5 presents the
conclusion and discusses the future direction of research.

2. PROBABILISTIC STATE MAPPING

A host of signal processing applications involve mapping or esti-
mating q ∈ Q from p ∈ P where P and Q might be the same
subspace. Applications such as speech modification, denoising and
speaker separation fall in to this category. Kalman filter and parti-
cle filter are some of the methods developed to perform these tasks.
Knowledge of this mapping function ‘f ’ is one of the fundamental
requirements of these traditional methods.

In this paper we propose a graphical system that will proba-
bilistically model the mapping between the subspaces P and Q
given sufficient training data. Figure 1 shows the graphical model
that is used to represent this state mapping. π and γ are hidden
variables that model the subspaces P and Q respectively. Assume
that subspaces P and Q can be modeled with N and M distinct
bases. Assume that the subspace P is modeled by N Gaussians
N (μn

π, σn
π ), where n = 1, 2, . . . , N and the subspace Q is mod-

eled with M Gaussians N (μm
γ , σm

γ ) where m = 1, 2, . . . , M .
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Fig. 1. Graphical model representing the mapping between states of
subspaces P and Q.

The relation between the states of P and Q is encoded in the
transition matrix A where amn = p(γm|πn) and

P
m amn = 1.

The joint probability p(pt,qt, πn, γm) can be written as:

p(pt,qt, πn, γm) = p(qt|γm)p(γm|πn)p(pt|πn)p(πn) (1)

The best place to motivate model parameter estimation is to start
with the solution of the estimation problem. Given the trained model
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M = {Π,Γ, A} and pt, the minimum mean square error (MMSE)
estimate of eqt is given by Equation (2)

eqt = Eq|p{q|p} =

Z
q · p(q|p)dq (2)

The conditional probability p(q|p) can be expressed as the marginal
of the joint probability (1)

p(q|p) =
p(p q)

p(p)
=

MX
m=1

NX
n

p(p,q, πn, γm)

NX
n=1

p(p|πn)p(πn)

(3)

Using Equations (3), (2) and (1) the MMSE estimate of eqt can be
written as

eqt =
MX

m=1

μm
γ

" NX
n

p(γm|πi)p(pt|πn)p(πn)

NX
n=1

p(p|πn)p(πn)

#
(4)

eqt = Mγαt (5)

where Mγ = [μ1
γ

... μ2
γ

... · · ·
... μM

γ ] is the matrix of bases formed by
the means of the Gaussian mapping the subspace Q and

P
m αm =

1 is the matrix of probabilities containing the belief for each basis.
According to the Equation (5) the estimate eq is the convex sum of
the bases mapping the subspace.

The MMSE estimates obtained with this model will lie in the
convex hull of the bases vectors, any point outside the hull is es-
timated with error. The performance of the estimator depends on
the placement of these bases vectors and the resulting convex hull.
The model is trained by making an educated guess on the number of
bases that would be required to map the subspaces P and Q, over-
estimating the number of bases will lead to over-fitting the model
to available training data. These over-fitted bases will fail to ex-
tract the underlying mapping and structure of the data. Figure 2(a)
shows the six bases of the subspace Q estimated without any spar-
sity constraints. On the other hand over-fitted bases with sparsity
constraints on the transition matrix A will permit a flexible mapping
and hence a larger convex hull. In the next section we will describe
the constraints that can be applied to the model to generate set of
over-complete bases better representing the structure of data.

2.1. Sparsity constrained probabilistic mapping

Under the current model every state πn from subspace P maps to a
state γm in subspace Q with a probability amn. In an over-complete
bases case (where number of bases exceeds the the dimension of
the space) this might be completely unnecessary. One particular in-
stance of q could be completely described by only a subset of the
bases, implying each input state πn only maps to a handful of the
output states γm. This sparsity constraints on columns of A has to
be imposed while training the model.

Various metrics have been applied to measure and impose spar-
sity, Lp norms are one of the most popular measures of sparsity [9].

This paper imposes the sparsity using entropic prior. Given a
probability distribution θ we can write the entropic prior for the dis-
tribution as Pe(θ) ∝ exp (−βH(θ)) for a multinomial distribution
entropy H(θ) = −P

i θi log θi. Positive values of sparsity param-
eter β favor distributions with lower entropy [10]. The distribution

θ corresponds to the p(π) and p(γm|πn) for n = 1, 2, . . . , N . En-
tropic priors will be use to trim the excess states in subspace P and
impose sparsity on the columns of transition matrix A.

2.2. Parameter estimation

Parameter estimation is performed using the a small variation to the
EM algorithm. Parameters for the Gaussians μγ,π, λγ,π are esti-
mated using the traditional EM, p(π) and p(γ|π) are estimated us-
ing maximum a posterior (MAP) estimation with entropic priors

A posteriori portability is computed for the E-step:

p(πn, γm|pt,qt) =
p(pt,qt, πn, γm)

NX
n=1

MX
m=1

p(pt,qt, πn, γm)

(6)

In the M-step, complete data likelihood L is maximized:

L = Eγ,π|pq,M{log p(pt,qt, πn, γm)} (7)

Solving the Equation (7) for the parameters of the Gaussians (mean
and variance) in subspaces P yields:

μn
π =

TX
t=1

MX
m=1

p(πn, γm|pt,qt) pt

TX
t=1

MX
m=1

p(πn, γm|pt,qt)

(8)

(σ2)
n
π =

TX
t=1

MX
m=1

p(πn, γm|pt,qt) (pt − μn
π)2

TX
t=1

MX
m=1

p(πn, γm|pt,qt)

(9)

The parameters of Gaussians of subspace Q can be written simi-
larly to those of subspace P and are omitted here due to the space
constraints.

Entropic estimation of p(π) is performed by maximizing the
new augmented likelihood R

R = L + τ
“ X

n

p(πn) − 1
”

+ δ
X

n

p(πn) log p(πn) (10)

where τ is the Lagrange multiplier and δ is the parameter that con-
trols the sparsity. The M-step for estimating p(πn) reduces to:

ωn

p(πn)
+ δ + δ log p(πn) + τ = 0 (11)

where ωn represents the expected sufficient statistice in this caseP
t

P
m p(πn, γm|pt,qt). Equation (11) is a system of simultane-

ous transcendental equations and can be solved using the Lambert
W function [11] as suggested by Brand [10] to yield:

p(πn) =
−ωn/δ

W(−ωne1+τ/δ/δ)
(12)

Equations (11) and (12) form a pair for fixed-point iteration that typ-
ically converges in 2-5 iterations.

Similar technique can be used to obtain the columns of the tran-
sition matrix A, where ωj

m =
P

t p(πj , γm|pt,qt) will estimate a

sparse representation of the jth column of the transition matrix. The
Figure 3 shows the effect of sparsity constraints on the transition
matrix.

Final model update equations are given by (6), mean and vari-
ance updates for Gaussians in both P and Q subspaces using (8) and
(9), and updates of transition matrix A and p(π) using fixed-point
update equations (11) and (12).
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2.3. Effect of sparsity constraints on the model.

The following synthetic data provides a good opportunity to illus-
trate the difference between complete and sparse parameterization
of a probabilistic map. Figure 2 shows four distinct data clusters that
form subspace Q. Subspace P is formed by taking the projection of
the data on the x-axis. Also the x and y dimensions of the clustered
data are uncorrelated. Most of the traditional algorithms will have
difficulty in estimating the q given p.

� = 0 and � = 0

1

2

3

4

(a) Over-complete bases.

� = 0.4 and � = 0.5

data
basis and
convex hull

(b) Over-complete bases with sparsity
constraints.

Fig. 2. Over-complete bases vectors extracted from the data and the
convex hull.

Two sets of six over-complete bases are obtained using the EM
algorithm. The first set of bases was obtained without any constraints
on p(π) and A. This basis set and its convex hull are shown in Fig-
ure 2(a). Without any constraints, the multiple basis/Gaussians were
placed near the means of the Clusters 1 and 4. This model ignores
the overlapping x-projections of Clusters 2 and 4 and overlapping y-
projections of Clusters 1 and 2. The convex hull formed with these
bases is around the means of the four clusters.

The second set of bases were obtained by imposing sparsity
ε = 0.5 on the transition matrix A and δ = 0.4 on p(π). Two bases
in this case have moved away from the means of Clusters 1 and 4,
forming a larger convex hull, as seen in the Figure 2(b). Additional
bases near Clusters 1 and 4 will be able to provide additional reso-
lution when reconstructing data points of Clusters 4 and 2 thereby
reducing the MSE in reconstructing y from x.

 

 
Transition Matrix A with � = 0 and � =  0

(a) No Sparsity imposed.

Transition Matrix A with � = 0.2 and � =  0.3
 

(b) With sparsity constraints
δ = 0.2 and ε = 0.3.

Fig. 3. Transition Matrix A.

3. APPLICATION: ARTIFICIAL BANDWIDTH
EXTENSION

The ABE is performed in the spectral domain. Figure 4 shows the
block diagram of the ABE system. There are two stages to the ABE

FFT

Narrowband
Signal

State Mapping

LS phase 
estimation

Mag

Phase

Model

IFFT

Broadband
Signal

Broadband Magnitude 
Estimation Bandstop

Filter 
(300-3700)Hz

+

Fig. 4. Block diagram of ABE system.

system: magnitude estimation and phase estimation, both the stages
are explained in detail in the next subsections. The synthesized
broadband speech is then passed through a bandstop filter to only
retain the missing components which are then added to the original
narrowband signal.

3.1. Magnitude Estimation

Let p ∈ R
k be the magnitude spectrum of the narrowband signal

and q ∈ R
l be the magnitude spectrum of the broadband signal

where k ≤ l. Probabilistic mapping M between the broadband and
the narrowband spectra is obtained using the method described in
Section 2.1.

The trained model M is used to estimate the high-frequency
components of the broadband signal from the narrowband speech
using Equation (5).

3.2. Phase Estimation

The naive approach of using the phase of the low-frequency com-
ponents to synthesize the broadband speech will produce artifacts in
the synthesized broadband audio. A better approach is to use a sim-
ple linear transform T to estimate the phase of the broadband signal
φq using the phase of the narrowband signal φp.

The transform matrix can be learned from training data using a
simple LLSE given by:

T = ΦqΦ†
p (13)

where Φp, Φq are the matrices of phases of the narrowband and
broadband speech and † is the pseduoinverse operation.

4. EXPERIMENTS AND RESULTS

Experiments were conducted on recordings from six speakers three
males and three females. The recordings were obtained from the
Wall Street Journal database, using 15–20 min of high bandwidth
data sampled at 16 kHz. The narrowband speech was obtained by
bandpass filtering the broadband speech with a 8th order Chebyshev
filter with cutoff at 300 and 3700 Hz. Both training and testing data
were analyzed with a 32ms window with 50% overlap between the
adjacent frames. The signal was windowed using a Hanning win-
dow. The spectrum was obtained using 512 point FFT resulting in
magnitude spectrum with 257 unique points.

Testing was performed on the data that disjoint the training set.
Equation (14) is used to measure the spectral distortion between the

reconstructed bPss(f) and orignal Pss(f) high bandwidth signal.

D2 =
1

fs

Z fs

0

`
20 log10(Pss(f)) − 20 log10( bPss(f))

´
df (14)
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(a) Female Speaker. (b) Male Speaker.

Fig. 5. Spectrogram for speech data for two speakers. From top original broadband speech sampled at 16 kHz, narrowband 8 kHz speech and
16 kHz bandwidth expanded speech reconstruction was performed using 512 bases with δ = 0.1 and ε = 0.4 and frame size of 32 ms.

where fs is the sampling frequency in Hz and A is the linear
prediction polynomial and Pss(f) = (|A(exp(j2πf/fs))|)−1.

Experiments were performed on data by varying window sizes,
number of bases and the sparsity parameters δ for p(π) and ε for the
transition matrix. Table 1 shows the spectral distortion with respect
to number of bases for a frame size of 128 samples. The models
used for these experiments were trained independent of the speaker.
Speaker dependent models display better performance. We observed
0.5 dB improvement in spectral distortion when the ABE was per-
formed using speaker dependent models with 80 bases and a frame
size of 128 samples. We observed an improvement in performance

Table 1. Number of bases and Spectral Distortion

bases 20 40 64 80 80
(ε = 0.3)

D2(dB) 4.5824 4.3329 4.1733 4.0683 4.0024

with increase in the frame size. The increase in the size of the FFT
requires an increase in the number of bases to maintain the perfor-
mance. This algorithm improves upon the performance of our previ-
ous ABE system [6] and within the measure, this algorithm outper-
forms the system suggested by [12]. Figure 5 shows spectrograms
for a male and a female speaker. In both cases the algorithm is able
to reconstruct the missing frequencies both in the 0 – 300 Hz and
3700 – 8000 Hz region artifact-free. Examples of the reconstructed
speech can be found at: www.ece.gatech.edu/˜kaustubh/
bandexp/icassp09.html.

5. CONCLUSION

In this paper we have presented a probabilistic subspace mapping
algorithm that exploits the inherent sparsity between the mapping of
the subspaces to improve the MMSE estimate obtained by the model.
Proper choice of the sparsity parameter is a matter of trial and error.
This mapping was successfully applied to ABE and does a good job
of reconstructing the missing frequency components.

The results presented in the paper are based on objective evalu-
ation and some primary subjective listening experiments. Listening
tests in controlled environment should be performed to evaluate and
quantify the performance of the system. We will be investigating

these extensions in the near future. We also intend to explore and
exploit the quasi-stationary nature of speech by modeling input sub-
space P with a HMM.
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