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ABSTRACT

In this paper, we continue our previous work on improving Band-
width Extension (BWE) of narrowband speech. We have shown
that including memory into the parametrization frontend (through
delta features) results in higher highband certainty irrespective of
feature type, with MFCCs exhibiting higher correlation, in general,
between both bands, reaching twice that using LSFs. By incorpo-
rating memory into the frontend of a conventional LP-based BWE
system, we were able to translate the higher correlation due to mem-
ory into BWE performance improvement. Using high-resolution
inverse DCT, we also achieved high quality speech reconstruction
from MFCCs, thus enabling MFCC-based BWE with improved
performance compared to conventional static LP-based BWE. We
continue this work by incorporating the superior correlation prop-
erties of frontend memory into our MFCC-based BWE system.
Log-Spectral Distortion as well as the more perceptually-correlated
Itakura-based measures show that incorporating memory into our
MFCC-based BWE system results in BWE performance superior to
that of our dynamic LP-based BWE system.

Index Terms— Bandwidth extension, memory inclusion, high-
resolution IDCT, highband certainty, mutual information

1. BACKGROUND

In traditional telephone networks, speech bandwidth is limited to the
0.3–3.4 kHz range. As a result, narrowband speech has sound qual-
ity inferior to its wideband counterpart and has reduced intelligibil-
ity especially for consonant sounds. Wideband speech reconstruc-
tion through Bandwidth Extension (BWE) attempts to regenerate the
highband (3.4–7 kHz) signal lost during the filtering processes em-
ployed in traditional networks, thereby providing backward compat-
ibility with existing networks. BWE is based on the assumption that
narrowband speech correlates with the highband signal, and thus,
given some a priori information about the nature of this correlation,
the higher frequency speech content can be estimated given only the
available narrow band. Most BWE schemes use either codebook
mapping or statistical modelling to perform this estimation.

Since BWE performance closely follows the correlation avail-
able between representations of the narrow and high frequency
bands, the premise of our work has been to quantify this corre-
lation for different speech representations in order to adopt those
representations with the greatest potential for BWE performance
improvement. In our previous work; first introduced in [1] and later
extended in [2], we made use of the concept of highband certainty
(certainty about the high band given the narrow band); defined in [3]
as the ratio of Mutual Information (MI) between the two bands to the

discrete entropy of the high band, in order to quantify the correlation
between speech frequency bands. Through highband certainty, we
investigated the effect of including memory into the frontend on
the resulting correlation (by using delta features in addition to the
conventional static features which make no use of the considerable
temporal correlation properties of speech), as well as the effect of
the type of parametrization. By varying the number of static feature
vectors involved in the estimation of the delta features, we have
shown that frontend-based memory inclusion can increase certainty
about the highband by as much as 86% for Mel-Frequency Cepstral
Coefficients (MFCCs), and 207%1 for Line Spectral Frequencies
(LSFs), with no increase in dimensionality. By further incorporating
frontend-based memory inclusion into an LP-based dual-mode BWE
system based on that of [5], we were able to translate these high-
band certainty gains into practical BWE performance improvement.
Objective analysis of the reconstructed speech quality through log-
Spectral Distortion (dLSD) showed that memory inclusion decreases
the dLSD of the extended highband speech (versus that obtained by
BWE with conventional static features) by an average of ≈ 5%2.

Traditionally, BWE techniques have used LP-based representa-
tions of speech spectra since reconstruction of the missing highband
signal then becomes a straightforward problem given a highband ex-
citation signal and a set of highband LP-based features. We showed,
however, in [2], that for similar dimensionalities, MFCCs result in
highband certainties that can reach almost twice as those resulting
from the LP-based LSFs. These results agree with the findings of
[6] which show MFCCs to have the highest speech class separability
and second highest MI content among several speech parametriza-
tions. In addition to their superior correlation properties compared
to LP-based parameters, MFCCs have the quite important advantage
of higher robustness (with the implementation of MFCC denoising
techniques) to the various types of acoustic (additive) and channel
(convolutional) noises. The all-pole spectral representation of LP-
based parameters becomes ill-suited to noise-corrupted spectra since
such spectra will suffer from zeroes introduced by noise. There-
fore, LP-based parameters can not provide any robustness in prac-
tical noisy environments, resulting in degraded BWE performance,
unless the narrowband speech input is pre-processed by speech en-
hancement algorithms. In contrast, MFCCs are derived directly from
speech spectra, and hence, the effects of time-domain additive and
convolutional noises on MFCCs are well-understood. Consequently,

1This figure, which differs from that estimated in [2], was obtained by
better implementation of the LBG training algorithm in the estimation of the
discrete highband entropies (shown in Table 1 of [4]).

2The dLSD results reported in [2] suffer from gain mismatches between the
reference wideband test waveforms and those obtained by BWE. By normal-
izing the BWE-reconstructed waveforms based on the energy in the original
0.3–3.0 kHz range, we obtain the more accurate average dLSD decrease above.
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there has been ample research on removing the effects of noise from
MFCCs, particularly in the field of automatic speech recognition
(ASR). As a result, MFCC denoising techniques that are success-
ful with more types of noise and at more adverse conditions than
speech enhancement pre-processing is, have been developed. This
has led MFCCs to become ubiquitous in ASR. To cite but only two
such techniques; the Vector Taylor Series approach of [7] and the
Cepstral Mean Normalization technique of [8] compensate for time-
domain additive and convolutional noise, respectively.

Despite their advantages, the difficulty of synthesizing speech
from MFCCs has restricted their use to fields that do not require
inverting MFCC vectors back into the original time-domain speech
signals, e.g., ASR. This difficulty arises from the non-invertibility of
several steps employed in MFCC generation; using the magnitude of
the complex spectrum, mel-scale filterbank binning and higher-order
cepstral coefficient truncation. In [4], however, we showed that high-
quality highband speech reconstruction from MFCCs is feasible us-
ing a simple cepstral-domain interpolation scheme based on high-
resolution inverse Discrete Cosine Transform (IDCT) [9]. Through
this scheme, we were able to exploit the advantages of MFCCs to
implement an MFCC-based BWE system that not only can perform
better than conventional LP-based BWE in clean environments (due
to MFCCs’ superior correlation properties), but which can also per-
form more robustly in noisy environments (with MFCC denoising).
Indeed, evaluating the performance of our static MFCC-based BWE
scheme in [4] by Itakura-based measures has shown an improvement
of up to 14.3%3 compared to static LP-based BWE.

In the work presented here, we attempt to replicate the perfor-
mance gains obtained by incorporating frontend-based memory into
LP-based BWE, with that based on MFCCs. Results show that, in-
deed, memory inclusion improves MFCC-based BWE performance
to the same extent it improves that using LSFs; i.e., dynamic MFCC-
based BWE outperforms dynamic LP-based BWE by, more or less,
the same degree static MFCC-based BWE outperforms that based on
LSFs. Thus, by combining both frontend-based memory inclusion
and MFCC features, we were able to exploit the superior correlation
properties of each to reach an average cumulative improvement of
≈ 7.5%, as measured by LSD. Measured with the more subjectively-
correlated COSH and symmetrized gain-optimized Itakura distortion
measures [4], the improvement is ≈ 43.7% and 53.9%, respectively.

2. MEMORY INCLUSION

2.1. Delta features

As described in [1], we include memory directly in the represen-
tation of spectral envelopes by means of delta coefficients, which
are appended to (or replace part of) the MFCC/LSF static features4.
Delta coefficients are obtained from static vectors by a first-order
regression (time-derivative) implemented by calculating linearly
weighted differences between neighbouring static vectors per

δt =

∑L

l=1
l · (ct+l − ct−l)

2
∑L

l=1
l
2

,

where δt is a delta coefficient at frame t, ct±l is the corresponding
static feature at frame t ± l, and L specifies the number of neigh-
bouring static frames (on each side of the tth frame) to consider.

3As described in Footnote 2, the results of our static MFCC-based BWE
vary slightly from those reported in [4].

4LSF and MFCC parameterizations are detailed in [2] and [4], respec-
tively.
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(b) static MFCC space, Dim(X, ΔX , Y, ΔY )=(10,0,6,0)

(a) static LSF space, Dim(X, ΔX , Y, ΔY )=(10,0,6,0)

(d) dynamic MFCC space, Dim(X, ΔX , Y, ΔY )=(5,5,3,3)

(c) dynamic LSF space, Dim(X, ΔX , Y, ΔY )=(5,5,3,3)

Fig. 1. Highband certainty, I

H
, versus span of memory, L, for static

and dynamic (static+delta) MFCC/LSF feature spaces with narrow
and high band dimensionalities of 10 and 6, respectively.

2.2. Highband certainty

As stated above, highband certainty is defined as the ratio of mutual
information, I(· ; ·), to discrete highband entropy, H(·). Represent-
ing the static MFCC/LSF vectors of the narrow and high bands by
X and Y , respectively, with ΔX and ΔY representing the corre-
sponding delta coefficient vectors, the highband certainty obtained
with static and dynamic frontends can then be written as I(X;Y )

H(Y )
and

I(X,ΔX ;Y,ΔY )
H(Y,ΔY )

, respectively. Using Gaussian mixture models and
vector quantization of the highband feature vectors to estimate I and
H , respectively5, we obtain the highband certainty results illustrated
in Fig. 1 for varying widths, L, of the time window used to calculate
delta features6. Fig. 1 shows the superiority of MFCCs in retaining
information content mutual to both bands (with both static and dy-
namic frontends). It also shows the considerable highband certainty
gains achieved by memory inclusion (86% and 207% for MFCCs
and LSFs, resp.), yet with no increase in frontend dimensionality.
The gains peak for 3 � L � 13 (60 � t � 260 ms), which includes
the 200 � t � 250 ms syllabic range. These results, thus, agree with
the modulation spectra findings of [10] which show speech informa-
tion content to be highest at the syllabic rate of 4–5 Hz.

In [2] and [4], we evaluated BWE performance using frontends
(a), (b), and (c) in Fig. 1. Our results confirmed that, indeed, BWE
performance follows the highband certainty results for these fron-
tends. Thus, in the work presented here, we attempt to further im-
prove BWE performance by making use of the superior correlation
properties of frontend (d).

3. SPEECH RECONSTRUCTION FROM MFCC FEATURES

3.1. MFCC parametrization

Our MFCC parametrization for the narrowband (0–4 kHz) and high-
band (4–8 kHz) signals (obtained by filtering the wideband speech to
be used in BWE GMM training), is detailed in [4]. Namely, the steps

5Refer to [2] for complete details on: (a) the estimation of I and H , and
(b), the training and testing data sets used.

6The static LSF results of Fig. 1 differ slightly from those of Fig. 1 in [2]
due to the changes in VQ implementation mentioned in Footnote 1.
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involved are: (1) pre-emphasis, (2) windowing, (3) magnitude spec-
trum calculation, (4) mel-scale filterbank binning, (5) log operation,
and (6) type-III DCT per

cn =

√
2

N

N−1∑
k=0

(log Yk) cos

(
(2k + 1)nπ

2N

)
,

where cn is the nth MFCC (0≤n≤N−1), N is the number of mel-
scale filters (N = 6), and Yk (or Xk) is the kth highband (or narrow-
band) mel-scale filter energy. At Dim(X ,ΔX ,Y ,ΔY ) = (10,0,6,0),
we showed in [4] that correlation between the two MFCC-para-
meterized frequency bands is almost twice that when using LSFs.
Accordingly, we used these dimensionalities for our static MFCC-
based BWE scheme to emphasize the performance improvement
using MFCCs versus LSFs. To demonstrate the effect of includ-
ing memory whilst preserving dimensionality, we replace the five
higher-order narrowband MFCCs and the three higher-order high-
band MFCCs by the delta coefficients of the remaining five lower-
order narrowband MFCCs and the three lower-order highband
MFCCs, respectively; i.e., Dim(X ,ΔX ,Y ,ΔY ) = (5,5,3,3). This
also allows us to compare BWE performance with the highband
certainty results of Fig. 1.

3.2. Highband speech synthesis

Using the trained GMMs, the dynamic (static+delta) 6-dimensional
highband MFCC vectors are estimated with maximum likelihood
from the available dynamic 10-dimensional MFCC-parameterized
narrow band. As indicated by the highband certainty results of
Fig. 1, the GMMs trained on dynamic vectors will result in high-
band MFCC vectors with likelihoods higher than those resulting
from the GMMs trained on static-only data. However, only the 3
static components of the highband vectors can now be used to recon-
struct highband speech (compared to all 6 components in the static
BWE case). Highband speech reconstruction from these 3 static
components follows in a manner similar to that from the static-only
6-dimensinal MFCC vectors of [4]. Since simple IDCT would result
in only 6 log-energies (with zero-padding the 3 static components
to a total dimensionality of 6, in order to match the number of mel
filters used in MFCC generation); insufficient to recreate the power
spectrum, we use high-resolution IDCT instead, given by

log Ŷ
k
′ =

√
2

N

N−1∑
n=0

cn cos

(
(2k′ + 1)nπ

2iN

)
,

where 0≤ k′ ≤ iN−1, N = 6, and i is an interpolation factor. This
has the effect of performing interpolation between the mel filters’
centre frequencies but in the cepstral domain, using the DCT basis
cosine functions as the interpolating functions. The result is a total
number of iN log-energies in the 4–8 kHz range. As shown in [4],
a resolution of 1 mel in that range translates into N = 6 and i = 100,
resulting in a fine 600-log-energy sample representation.

By exponentiation and mel-to-linear conversion, we obtain high-
band power spectra, which, using IFFT and the Levinson-Durbin
recursion, can be further converted to LPCs. To generate the high-
band excitation signal, we use the narrowband signal equalized in
the 3.4–4 kHz band. As shown in [5], Gaussian noise modulation
by the 3–4 kHz signal envelope (containing strong pitch harmon-
ics) results in a superior excitation signal, which, combined with the
reconstructed highband LPCs, leads to excellent highband signal re-
construction through LP synthesis.

4. BWE RESULTS AND ANALYSIS

Through minor modifications, we incorporate frontend-based mem-
ory inclusion into our static dual-mode MFCC-based BWE system,
detailed in [4]. For comparison, we also use the static and dynamic
versions of our LSF-based BWE system of [2].

We evaluate BWE performance in the missing 4–7 kHz band by
LSD (dB), given by

d2
LSD

=
1

π

∫ ωh

ωl

(
20 log10

g

|Y (ejω)|
− 20 log10

ĝ

|Ŷ (ejω)|

)2

dω,

where ωl and ωh are the cutoff frequencies of the missing high band,
g and Y (ejω) are the highband gain and frequency spectrum of the
original wideband signal, respectively, while ĝ and Ŷ (ejω) are those
of the GMM-estimated reconstructed signal.

In addition to LSD, which is widely used to evaluate BWE per-
formance (and hence, allowing direct comparison of our results with
those of previous works), we obtain more subjectively-correlated re-
sults by also using two Itakura-based distortion measures to evaluate
our BWE performance. We argued in [4] that the the Itakura-Saito
distortion [11] is more appropriate than LSD for evaluating the spec-
tral reconstruction performance of BWE schemes in general; while
LSD ignores the perceptual importance of some aspects of the LP
speech spectrum representation (since it weights differences in for-
mants and valleys equally), the Itakura-Saito distortion has more per-
ceptual relevance in that it weights differences in LP spectra more
heavily for peaks (which generally occur at formant locations) than
for valleys. Indeed, it has been shown in [12] that the gain-optimized
variant; the Itakura distortion [11], has a higher correlation of 0.73
with the subjective Diagnostic Acceptability Measure (versus 0.63
for LSD). Thus, we also evaluate BWE performance using: (a) the
symmetrized Itakura-Saito distortion; the COSH measure, given by

dCOSH =
1

2

[
dIS

(
g2

|Y |
2 , ĝ2

|Ŷ |
2

)
+ dIS

(
ĝ2

|Ŷ |
2 , g2

|Y |
2

)]
,

where

dIS

(
g2

|Y |
2 , ĝ2

|Ŷ |
2

)
=

1

2π

∫ ωh

ωl

[
g2/|Y |2

ĝ2/|Ŷ |
2
− log

g2/|Y |2

ĝ2/|Ŷ |
2
− 1

]
dω,

and (b), the symmetrized gain-optimized Itakura distortion, given by

dI =
1

2

[
dIt

(
g2

|Y |
2 , ĝ2

|Ŷ |
2

)
+ dIt

(
ĝ2

|Ŷ |
2 , g2

|Y |
2

)]
,

where

dIt

(
g2

|Y |
2 , ĝ2

|Ŷ |
2

)
� min

ĝ>0
dIS

(
g2

|Y |
2 , ĝ2

|Ŷ |
2

)
= log

(
ŷT RY ŷ

g2

)
,

using the reconstructed LPC vector, ŷT , and the Toeplitz autocorre-
lation matrix, RY , of the original signal LP model. Since dI is gain-
independent while dCOSH is not, not only do we obtain more subjec-
tively correlated results by employing both distortion measures, but
we also gain a means by which to evaluate performance of highband
gain-related and spectral shape-related reconstruction, separately.

Fig. 2 shows BWE performance evaluated using the three dis-
tortion measures. While illustrating the gains obtained by incorpo-
rating memory into our MFCC-based BWE system, Fig. 2, in effect,
also summarizes our previous works in [2] and [4]. Comparing the
bottom subplots with the top ones (i.e., dynamic frontends versus
static ones) shows the considerable gains in BWE performance ob-
tained by memory inclusion in general. These gains are tabulated
in Table 1. The benefits of exploiting MFCCs’ superior correlation
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Fig. 2. BWE performance with memory inclusion (bottom subplots)
versus performance with no memory inclusion (top subplots), for
frontends with MFCCs (dotted lines) and LSFs (solid lines).

properties are also shown by comparing the dotted lines in Fig. 2 to
the corresponding solid ones, with the gains tabulated in Table 2 as
well. Tabulated gains in the dynamic cases are estimated over L.

Thus, by combining both frontend memory and MFCCs fea-
tures in a conventional LSF-based BWE system, we achieve an av-
erage cumulative improvement of 7.5% in terms of dLSD. The more
subjectively-correlated dCOSH indicates that the improvement is, in
fact, quite higher; 43.7%. Considering spectral-shape reconstruction
alone (by eliminating the effect of gain-related differences through
dI) shows an even higher improvement of 53.9%, indicating that the
trained GMMs were more successful in reconstructing the shapes of
highband spectra than in reconstructing highband gains. This latter
finding is true for most dI results in Tables 1 and 2 above.

Finally, we note that these BWE performance results generally
follow the trends of highband certainty in Fig. 1; e.g., adding fron-
tend memory to static LSF-based BWE leads to a performance im-
provement higher than that obtained by using static MFCCs rather
than LSFs, conforming with the higher highband certainty of fron-
tend (c) in Fig. 1 compared to frontend (b). While the actual BWE
performance gains of Tables 1 and 2 are minor relative to the con-
siderable highband certainty gains of Fig. 1, we should also note that
the latter are, in fact, upper bounds on achievable performance im-
provements; highband certainty only matches GMM performance,

Table 1. Average (maximum) BWE performance improvement ob-
tained by frontend memory inclusion.

dLSD (dB) dCOSH dI

LSFs 4.9% (6.0%) 38.0% (45.7%) 44.6% (45.3%)
MFCCs 6.9% (7.6%) 36.2% (39.7%) 45.8% (46.2%)

Table 2. Average (maximum) BWE performance improvement ob-
tained by employing MFCCs rather than LSFs.

dLSD (dB) dCOSH dI

static -0.1% 6.6% 14.3%
dynamic 2.0% (3.2%) 3.3% (15.0%) 16.2% (17.9%)

and hence, does not take into account all other components in a real
BWE system (e.g., errors in generating the excitation signal, errors
in reconstructing speech from MFCCs, etc.). Thus, the ideal BWE
system is that which can translate the full potential of temporal mem-
ory and parametrization into matching performance gains.
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