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ABSTRACT
We consider blind late-reverberation suppression in speech signals
measured with a single microphone in noisy environments. We
exploit that reverberant speech shows correlation over longer time
spans than clean speech by predicting the contribution of reverberant
energy to the current observed spectrum from the enhanced spec-
tra of previous frames. The prediction parameters are recursively
updated with estimates of the correlation coefficients between the
current reverberant spectrum and enhanced previous spectra. The
contributions of late reverberation and noise are suppressed by a
standard noise reduction algorithm. The algorithm is shown to
decrease the long-term correlation. It achieves significant improve-
ments in segmental speech-to-interference ratio and Bark spectral
distortion for typical reverberation times and noise levels, while
almost no distortions are introduced in clean speech.

Index Terms— Speech enhancement, echo suppression.

1. INTRODUCTION
It is well-known that noisy and/or reverberant speech is harder to
understand than clean speech [1–3]. Generally also the performance
of automatic speech recognition systems decreases [4,5]. It is there-
fore of much interest to develop processing algorithms that enhance
speech degraded by additive and convolutive distortions. Best re-
sults are achieved using multiple microphones, but often there is
only one microphone available. Recently, several single-microphone
blind dereverberation techniques have been proposed in the litera-
ture, e.g., [5–10].

The HERB technique [5] starts with constructing an initial esti-
mate of the harmonic speech components corresponding to the direct
path of the Room Impulse Response (RIR). This is done for a large
database of speech filtered by the same RIR. The dereverberation
filter is found in the frequency domain such that it, on the average,
best turns the reverberant speech into the direct harmonic signal es-
timates. When the initial harmonic signal estimates are sufficiently
good, HERB is capable of providing precise dereverberation even
for reverberation times (T60)1 as long as 1 second.

Filters that maximize the kurtosis of the Linear Prediction (LP)
residuals have been proposed [11] for multi-microphone dereverber-
ation. This technique also can be applied for a single microphone [9].
However, convergence of the adaptive filter is then quite slow and ad-
ditional processing is required to suppress long-term reverberation
effects.

Practical reverberant signals are often contaminated by nonsta-
tionary additive background noise as well. This may deteriorate the
performance of methods that are designed to combat convolutive
distortions only. Habets et al. [10] proposed a single-microphone

1The reverberation time T60 is defined as the time taken for the sound to
decay to 60 dB below its value at cessation [2].

processing technique that uses a statistical model to suppress late
reverberation and noise together and, in a second stage, spatiotem-
poral averaging of the LP residual to reduce early reverberation and
residual late reverberation. The method shows promising results. It
requires blind estimation of T60 in noisy conditions, however, which
is not a trivial problem [2].

The Discrete Fourier Transform (DFT) magnitudes of clean
speech are highly correlated over time spans of about 50 ms [12].
In reverberant speech, this correlation length will be extended. Esch
and Vary [13] exploited the correlation in clean speech DFT coef-
ficients by means of complex Linear Prediction to improve noise
reduction performance. The prediction error signal still contains
the noise that is subsequently suppressed. Any reverberation will
remain, however, because it is included in the predicted signal.

In this paper, we will exploit the increased correlation length of
reverberant speech to make a prediction of the contribution of late re-
verberation to the spectral variance of the complex DFT coefficients
of the current frame, and suppress it by applying a standard spectral
gain function. We do not need to estimate T60.

This paper is organized as follows. Section 2 describes the mod-
eling assumptions and introduces some quantities of interest. In Sec-
tion 3 our proposed method is presented in detail. Experimental re-
sults can be found in Section 4 and concluding remarks follow.

2. MODELING ASSUMPTIONS AND DEFINITIONS
2.1. Time-domain model
We assume the observed noisy and reverberant speech signal x to be
the sum of a source speech signal s convolved with an RIR h and
additive noise d, independent of s:

x(n) =
∞∑

l=0

h(l)s(n− l) + d(n) = y(n) + d(n), (1)

where n is the discrete-time sample index and y is the noise-free
reverberant signal. RIRs generally consists of a number of impulses
for the early reflections and an exponentially decaying tail with a
more noise-like appearance giving rise to the late reverberation.

2.2. Spectral modeling
Let X(k, m), Y (k, m), and D(k, m) be complex-valued random
variables representing the short-time DFT coefficients at frequency
index k of the signal frame starting at sample indexm from the noisy
reverberant speech, reverberant noise-free speech, and noise process,
respectively. In speech enhancement systems, m is a multiple rR
of the frame hop size R. According to (1) we have X(k, m) =
Y (k, m) + D(k, m). Y (k, m) can be written as

Y (k, m) =

∞∑
l=0

h(l)S(k, m− l), (2)
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where S(k, m − l) is the short-time DFT of a windowed frame of
s starting at sample index m − l. T60 can be defined frequency
dependent. Interestingly, (2) shows that it is the length of the RIR in
the time domain that determines, for all frequency bins, how many of
the past clean DFT coefficients contribute significantly to the current
observed DFT coefficient.

For ease of notation we may drop in the following time and/or
frequency indices when this does not cause confusion. We can split
the summation in (2) into a contribution YE from the direct path plus
the early reflections, and the rest of the terms that constitute the late
reverberation YL as follows

YE(k, m) =

L−1∑
l=0

h(l)S(k, m−l), YL(k, m) =

∞∑
l=L

h(l)S(k, m−l).

(3)

2.3. Speech enhancement
Especially the reverberation arriving from about 50 ms after the di-
rect signal degrades intelligibility [14]. As proposed in [15], we will
model the current late reverberation term YL(k, m) as an additive
noise term that is uncorrelated with the current YE(k, m). The late
reverberation will be suppressed similar to the noise by means of
a standard spectral gain function. Our task then is to estimate the
spectral variances λL and λD of late reverberation and noise, re-
spectively. For estimation of λD, we will use the method in [16],
which can accurately track highly nonstationary noise sources. The
algorithm for estimation of λL proposed in this paper differs from
that in [15]. It exploits long-term correlation induced by the RIR
and is detailed in the next section. Our final goal is to estimate the
early-reverberance spectral DFT coefficients YE(k, m). This is done
in two steps. First noise reduction is applied2 toX(k, m) to estimate
the reverberant DFT coefficient:

Ŷ (k, m) = G(ξ̂D(k, m), ζ̂D(k, m))X(k, m), (4)

where G is a spectral gain function and ξ̂D and ζ̂D are estimates of
the prior SNR and the posterior SNR parameters, defined as

ξD(k, m) =
λY (k, m)

λD(k, m)
, ζD(k, m) =

|X(k, m)|2
λD(k, m)

. (5)

λY (k, m) is the variance of Y (k, m). In the second step, YE(k, m)
is estimated as follows:

ŶE(k, m) = G(ξ̂L(k, m), ζ̂L(k, m))Ŷ (k, m), (6)

with ξ̂L = λ̂E/λ̂L and ζ̂L = |Ŷ |2/λ̂L. The algorithm for esti-
mating λL is described in Sections 3.2 and 3.3. The variance of
YE is denoted as λE . The decision-directed approach [17] will be
used for estimation of the prior SNRs, with a bias correction [18].
The ŶE(k, m) are transformed back into the time domain and the
enhanced speech is formed by an overlap-add procedure.

3. SPECTRAL VARIANCE ESTIMATION
3.1. Spectral autocorrelation functions
For a given frequency bin, the S(k, m − l) in (2) are highly cor-
related for consecutive values of l, because the corresponding time
frames (of length N samples) overlap by N − 1 samples. Clean
speech DFT coefficients can have significant correlation in time be-
tween them even when the frames overlap by less than 50% [12].

2One reason for applying noise suppression first is that noise signals may
also be reverberant, with RIRs different from that of the speech. This step
already suppresses some of the late reverberation (see Section 4).
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Fig. 1. (a) Absolute value of autocorrelation functions ρ of speech
DFT coefficients for clean speech and reverberant speech with rever-
beration times of 0.3, 0.6, and 0.9 seconds. (b) Effect of the proposed
algorithm on the long-term correlation in the reverberant speech.

In reverberant speech the correlation times are even larger. This is
illustrated in Figure 1 (a). The absolute value of the (normalized)
autocorrelation function of the complex DFT coefficients is shown
for clean speech and for examples of reverberant speech with T60s
of 0.3, 0.6 and 0.9 seconds, respectively, obtained from about 5 min-
utes of speech3. Results are averages for the frequencies between
300 and 3400 Hz. The solid and dashed lines in Figure 1 (b) show
the autocorrelation functions before and after application of our pro-
posed algorithm to the reverberant speech signals, respectively. We
see that our algorithm decreases the long-term correlation. This hap-
pens because we are selectively suppressing the reverberation: the
DFT coefficients which are most affected by reverberation are most
strongly suppressed by the spectral gain function.

3.2. Algorithm outline
It is possible to approximate the late reverberation term in (3) by a
weighted sum ỸL of speech DFTs, spaced P samples apart:

ỸL(k, m) =

J∑
j=0

cj(k)S(k, m−Δ− jP ), (7)

where Δ is introduced to skip the early reverberation part. Because
of the correlation in the S(k, m − l), each term in the summation
in (7) will account for part of the contributions of the P − 1 omit-
ted terms in its neighborhood. The optimal coefficients cj(k) are
complex and frequency dependent since the correlations are complex
with frequency dependent phases. We would like to use |ỸL|2 for es-
timation of λL. However, two modifications are needed. Firstly, we
expect |ỸL|2 to be biased low, because of the subsampling in (7).
From the correlation function of clean speech shown in Figure 1 (a),
we can calculate how much we expect to underestimate λL on the
average. The resulting bias correction factor is given by

B = P/
l=+∞∑
l=−∞

|ρ(l)|2, (8)

where ρ(l) is the correlation coefficient at lag l. The bias correc-
tion factor is roughly the same for all frequencies and we therefore
use a frequency independent value.The second modification comes

3Frames with an energy more than 40 dB below the maximum frame en-
ergy of all the (reverberant) speech where omitted in the computation of the
correlation coefficients.
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about because in an enhancement system, we don’t have available
the clean speech DFT coefficients. We will therefore use the previ-
ously enhanced DFT coefficients ŶE(k, m − Δ − jP ) to make a
prediction Y̌L as follows:

Y̌L(k, m) =
√

B
J∑

j=0

ĉj(k)ŶE(k, m−Δ− jP ). (9)

Section 3.3 explains how we determine the prediction coefficients
ĉj(k). An estimate λ̂L of the late-reverberance spectral variance can
now be made as follows

λ̂L(k, m) = ηλ̂L(k, m−R) + (1− η)
∣∣Y̌L(k, m)

∣∣2 , (10)

where η is a small smoothing parameter.
We limit λ̂L to values smaller than the estimated variance of the

reverberant speech λ̂Y which was obtained from the noise reduction
step. That is, we take min [λ̂L(k, m), λ̂Y (k, m)] as our final esti-
mate of λL.

The time span of Δ + JP should cover the maximum T60 con-
sidered. In this paper, we consider a maximum T60 of about 1 sec-
ond. Larger values can be handled easily by increasing the value of
J . Proper choices for all parameters are given in Section 3.4.

3.3. Estimation of the prediction coefficients
The prediction coefficients ĉj(k) in (9) are found by estimation
of the average correlation coefficients between Ŷ (k, m) and the
ŶE(k, m − Δ − jP ). The correlation coefficients are near-
optimal least-squares solutions when P is chosen such that the
ŶE(k, m − Δ − jP ) are weakly correlated. We use recursive
smoothing to be able to adapt to slow changes in the RIR, as follows

ĉj,r(k) = αj,r(k)ĉj,r−1(k) + (1− αj,r(k))ρ̂j,r(k), (11)

where r is the frame index. The αj,r(k) are smoothing parameters
and ρ̂j,r(k) are the current estimates of the correlation coefficients.
The recursive smoothing effectively causes the parameters to be esti-
mated from a limited amount of data (in the order of a few seconds).
But since the sequence of speech spectral amplitudes is nonstation-
ary with a very large dynamic range, we must be very careful with
updating the prediction coefficients in order to keep their variance
low. Large values of the |Ŷ | and |ŶE | can cause jumps in the param-
eters. This can be avoided by computing the ρ̂j,r(k) from normal-
ized data, as follows:

ρ̂j,r(k) =
Ŷ (k, m)

β(k, m)|Ŷ (k, m)|
Ŷ †

E(k, m−Δ − jP )

|ŶE(k, m−Δ − jP )| , (12)

where † means complex conjugation and β(k, m) is a bias correction
factor. It is given by

β(k, m) =
μ̂|E|(k, m)

μ̂|Y |(k, m)
, (13)

where μ̂|Y |(k, m) and μ̂|E|(k, m) are long-term estimates of the
the mean of |Ŷ (k, m)| and |ŶE(k, m)|, respectively. The factor
β(k, m) is introduced to correct for the large bias that would re-
sult from simply normalizing with |Ŷ (k, m)|. The long-term mean
estimates are computed by recursive smoothing of the |Ŷ (k, m)| and
|ŶE(k, m)|, respectively, with a smoothing factor equal to 0.98.

The default value of the αj,r(k) in (11) is 0.98. However, we set
them to 1 (meaning that the ĉj(k) are not updated) when the ρ̂j,r(k)
are deemed unreliable. The following conditions are used:

a) ζ̂D(k, m) < τ ;

b) |ŶE(k,m−Δ−jP )|2

λ̂L(k,m−Δ−jP )+λ̂D(k,m−Δ−jP )
< θ,

where τ and θ are threshold parameters. Conditions a) and b) aim at
excluding from the adaptation the DFT coefficients that are affected
strongly by the noise and reverberation. When a) happens, αj,r(k)
is set to 1 for all j, while b) is checked for each j individually.

Because the ĉj(k) are estimated from a limited amount of data,
their variance can cause overestimation of λ̂L, leading to some dis-
tortions in clean speech. These distortions can be kept to a minimum
by using only the terms in the summation in (9) for which the ĉj(k)
are statistically significant. We determined experimentally the stan-
dard deviation of the ĉj(k) in clean speech (that is, without noise or
reverberation). When the algorithm is applied in practice only the
terms in (9) are summed for which the current value of |ĉj(k)| is
larger than 2.6 times the standard deviation of ĉj(k) in clean speech.

3.4. Parameter settings
We use frames of length N = 256 samples (32 ms for a sampling
frequency of 8 kHz). Square-root Hanning analysis and synthesis
windows are applied. Common values of R are N/4 or N/2. We
experimented with R = N/4 and R = N/2, and P = R and
P = 2R (for convenience, P is taken as a multiple of R). We
found that smaller values of R and P lead to more reverberation
suppression, but also to more speech distortion. Therefore, we chose
R = N/2 and P = 2R for the experiments in Section 4. Δ should
be taken larger than the correlation length in clean speech. From
Figure 1(a), we see that a value corresponding to about 30 ms or
more is appropriate, therefore we used Δ = N . With these choices
J = 30 is sufficient to cover a maximum T60 of 1 second. A bias
correction factor B = 1.65 was applied in (9). A constant value of
η = 0.2 was used in (10), and the default value of the αj,r in (11) is
0.98. We set τ = 2 and θ = 1 in conditions a) and b) in Section 3.3,
respectively, independent of frequency. The gain function G in (4)
and (6) assumes a generalized Gamma prior for the speech spectral
amplitudes with parameters γ = 1 and ν = 1 [19].

4. EXPERIMENTAL RESULTS
We evaluated the algorithm on speech convolved with RIRs with
reverberation times up to 0.9 seconds, in different noise conditions.
All RIRs used in this paper were simulated with the image method,
using the Matlab implementation provided by Habets [15, 20]. The
RIRs were simulated for a room with dimensions 6x5x3 meters. We
used a source-microphone distance of 1 meter.

The speech material consisted of 3 minutes of speech sentences
from TIMIT, without intervening pauses. The noise signals were
taken from the NTT monaural noise database. We used car interior
noise and shopping mall noise. In addition, computer-generated sta-
tionary white Gaussian noise was used. All signals were limited to
telephone bandwidth. The prediction coefficients were always ini-
tialized with zero values.

For evaluation of the algorithm, we use Segmental Signal-to-
Interference Ratio (SegSIR). Let sr be a time frame of the clean
signal corresponding to the direct path of the RIR. Similarly, ŝr is a
time frame of an enhanced signal. SegSIR is now defined as

SegSIR =
1

|R|
∑
r∈R

10 log10

( ||sr||2
||sr − ŝr||2

)
, (14)

where ||.||2 is the energy of a frame and R is an index set consist-
ing of the non-silence frames of the clean direct signal. |R| is the
cardinality ofR.
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Table 1. SegSIR [dB] values before processing (bp) and after noise
suppression (ns) and subsequent dereverberation suppression (ds)
for different reverberation times, noise sources, and SNRs.
T60 Noise Stat. WGN Car int. Shop. mall
[s] free 10 dB 20 dB 10 dB 20 dB 10 dB 20 dB

bp ∞ 3.97 14.0 5.50 15.5 4.80 14.8
0 ns 39.5 9.18 16.2 10.2 17.6 7.81 15.9

ds 35.5 9.00 15.7 10.1 17.2 7.74 15.6
bp 4.06 -1.01 2.64 -0.55 2.75 -0.68 2.74

0.3 ns 4.18 2.67 3.76 2.68 3.78 1.91 3.59
ds 4.69 3.10 4.18 3.07 4.23 2.30 4.03
bp -1.60 -4.35 -2.15 -4.11 -2.11 -4.16 -2.12

0.6 ns -1.04 -1.08 -0.99 -1.19 -1.02 -1.47 -1.06
ds 0.94 0.62 0.91 0.48 0.85 0.14 0.86
bp -4.50 -6.46 -4.82 -6.30 -4.81 -6.33 -4.81

0.9 ns -3.53 -3.21 -3.39 -3.36 -3.45 -3.41 -3.44
ds -0.81 -0.82 -0.75 -1.00 -0.78 -1.12 -0.78

Table 1 shows the SegSIR values for different reverberation
times, and noise sources and Signal-to-Noise Ratios (SNRs). The
SNRs are defined with respect to the reverberant speech. We also
computed the EMBSD measure [21]. Its values are not shown be-
cause of lack of space, but they display clear improvements as well.

We observe that our algorithm causes almost no distortions on
clean direct signals (SegSIR = 35.5 dB). The reverberant charac-
ter of the other signals was clearly reduced by the processing, also
in the noisy conditions. The artifacts that could be heard in these
signals are typical of spectral suppression algorithms.

One can notice in the table that the noise reduction step sup-
presses some of the reverberation. This does not affect the overall
performance, since it decreases the long-term correlation. There-
fore, the subsequent reverberation suppression works on the remain-
ing part of the reverberance energy.

5. CONCLUDING REMARKS
Considerable reduction in late reverberation is possible by exploit-
ing long-term correlation in the DFT domain, even with a single mi-
crophone in noisy conditions. Combining our algorithm with tech-
niques that reduce early-reverberation effects is of interest, for ex-
ample those that process the linear prediction residual [6,9,10]. This
may also further improve the suppression of the late reverberation,
because the approximation made in (9) then becomes more accurate.

The prediction coefficients are continuously updated in our al-
gorithm and we may be able to follow slow changes in the room
impulse response. Robustness to such changes is currently under
investigation.
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