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ABSTRACT
The speech signal is usually considered as stationary during short
analysis time intervals. Though this assumption may be sufficient
in some applications, it is not valid for high-resolution speech
analysis and in applications such as speech transformation and ob-
jective voice function assessment for detection of voice disorders.
In speech, there are non stationary components, for instance time-
varying amplitudes and frequencies, which may change quickly
over short time intervals. In this paper, a previously suggested time-
varying quasi-harmonic model is extended in order or to estimate the
chirp rate for each sinusoidal component, thus successfully tracking
fast variations in frequency and amplitude. The parameters of the
model are estimated through linear Least Squares and the model
accuracy is evaluated on synthetic chirp signals. Experiments on
speech signals indicate that the new model is able to efficiently esti-
mate the signal component chirp rates, providing means to develop
more accurate speech models for high-quality speech transforma-
tions.

Index Terms— Speech modeling, speech analysis, non station-
ary analysis, chirp rate, f0 evolution

1. INTRODUCTION

It is well known that speech is, in essence, a non-stationary signal.
The origins of these non-stationarities are intimately related to the
speech production mechanisms, including vocal tract movements,
vocal fold vibration and lip radiation. The classical approach in
speech processing is to consider that, under a reasonably small inter-
val, the coarse spectral structure of speech can be considered as sta-
tionary. So, it is common practice to separate the speech signal into
segments in which the parameters of interest can be estimated in a
relatively reliable manner. This assumption enabled the widespread
use of techniques based on Fourier analysis, linear prediction and si-
nusoidal/harmonic models in speech analysis, coding, synthesis and
modification. In all of these applications, the underlying technolo-
gies must somehow deal with residual information that cannot be
captured by the speech model itself. Consequently, we seek to bet-
ter model the deterministic part of the speech signal, thus reducing
the residual information. In speech coding, this improved model-
ing could lead to more efficient coding schemes, achieving a better
compromise between the speech quality and coding rate. In speech
synthesis and modification, the residual information is considered to
be purely stochastic, though this is not the case. For instance, in the
Harmonic plus Noise Model (HNM), the high-frequency region of
the spectrum is generated as a modulated noise component, while the
lower band is considered deterministic [1]. However, this discrim-
ination between the deterministic and stochastic parts of the signal

is rather artificial. In these (and many more) speech applications,
there is a clear need for models that better capture the determin-
istic content of speech signals. A step further in speech modeling
would be to take into account the non-stationary nature of speech
directly in the modeling. This improved modeling would be partic-
ularly helpful in analyzing transient parts of a signal in which rapid
movements of the vocal tract, as well as rapid variations of the vo-
cal fold vibrations, are observed. More generally, so-called atypical
voices and/or phonations (e.g. pathological voices; voices produced
by elderly people or children; emotional speech) may exhibit non-
stationarities, even within small observation windows in which one
would expect the speech signal to be stable.

The aforementioned non-stationarities manifest themselves in
AM-FM modulation of the speech signal. The estimation of such
modulation effects has been addressed in various ways. A first class
of methods uses non parametric time-frequency representations such
as the STFT, Spectrogram or Wigner-Ville distribution [2] to locate
the relevant modulation events and estimate their parameters. A sec-
ond approach is to extract relevant information from the speech sig-
nal and then apply operators in order to estimate the AM-FM com-
ponents. This can be done either with a Hilbert transform [3] or by
applying energy operators like the Teager-Kaiser operator [4]. The
limitations of these techniques lie in their lack of robustness, espe-
cially in the case of multi-component AM-FM signals. Interestingly,
a method based on a non-parametric Fan-Chirp analysis has been
suggested in [5] [6] to track the frequencies of harmonically related
sinusoidal components.

In this paper we propose a method for speech analysis based on
a parametric time-varying model that captures the linear evolution
of the frequency of sinusoidal components. In previous work [7],
important properties of a model initially introduced by Laroche et
al. in [8] were revealed: in essence, the complex slope, introduced
to capture variations of the harmonic components, can be decom-
posed into two terms, one for frequency adjustment and the other
for the amplitude slope. In this work we extend the model by intro-
ducing a second order complex polynomial for each harmonic com-
ponent. We describe the overall estimation procedure, based on the
minimization of a Least Square criterion, and we further propose an
iterative scheme to refine the model parameters and, consequently,
the estimation of the different sinusoidal components. Typical sim-
ulation results carried out on synthetic chirp signals, as well as on
real speech signals, illustrate the potential of the proposed method
to effectively track the linear evolution of the frequency of each si-
nusoidal component independently. Note that this is an interesting
property since the model is not limited to strictly harmonically re-
lated components as in [5]. Moreover it is shown that the model can
account for errors in the initial estimates of the sinusoidal component
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frequencies.
The paper is organized as follows. Section 2 presents the model

and its underlying properties. The estimation procedure is then de-
scribed in section 3. Section 4 illustrates the behavior of the pro-
posed model on a synthetic chirp signal, as well as on speech signals.
Section 5 concludes the paper.

2. MODEL FORMULATION

2.1. Motivation

In this paper we investigate new methods for the analysis of harmon-
ically related sinusoidal components that can be approximated on a
certain time interval [−t0, t0] by the following equation:

s(t) =
KX

k=−K

Ak(1+γ1,kt+γ2,kt2)ej(2πkf0t+φ2,kt2+φ1,kt+φ0,k).

(1)
whereK is the number of harmonics, also known as the order of the
model, f0 is the local fundamental frequency and Ak, γ1,k and γ2,k

are real coefficients that define the amplitude polynomial of the kth
component. φ0,k, φ1,k and φ2,k are the coefficients of the phase
polynomial of the kth component. Note that for this class of sig-
nals the amplitude polynomial of each harmonic is able to model a
large variety of amplitude modulations while the phase polynomial
is able to capture two phenomena present in speech signals: firstly,
the frequency mismatches between kf0 and the actual kth harmonic
frequency which may be different due to an erroneous f0 estimation
or due to the detuning of some harmonics [7], and secondly, the lin-
ear evolution of each harmonic frequency through the term φ2,kt2.
The chirp rate of the kth component is given as 2φ2,k .

The estimation of the above unknown parameters of the speech
signal is a highly nonlinear procedure. In order to obtain a linear
estimation problem, a simple yet powerful technique is to approxi-
mate the signal in eq. (1) by Taylor series expansion. Thus, for one
component, the second order Taylor series approximation gives:

sk(t) ≈ Akejφ0,k (1 + γ1,kt + γ2,kt2)

[1 + j(φ1,kt + φ2,kt2)−
1

2
(φ1,kt + φ2,kt2)2]ej2πkf0t.

(2)
Keeping the order of the polynomial up to 2, sk(t) is further approx-
imated by:

sk(t) ≈ Akejφ0,k [1 + (γ1,k + jφ1,k)t

+ (γ2,k − φ2
1,k/2 + j[φ2,k + γ1,kφ1,k])t2]ej2πkf0t.

(3)

2.2. Model definition

As the approximated signal in eq. (3) has a second order polynomial
with complex coefficients, we propose to model the speech signal in
eq. (1) by:

ŝ(t) =

KX
k=−K

(ak + bkt + ckt2)ej2πkf0t, t = −N, ..., N (4)

where, as before, K is the number of harmonics and f0 is the local
fundamental frequency, while {ak, bk, ck}

K
k=−K are complex coef-

ficients which contain both amplitude and phase/frequency informa-
tion.

2.3. Time-domain Properties

From eq. (4), the instantaneous amplitude for each component is a
time-varying function given by:

mk(t) = |ak + bkt + ckt2|

=
q

(aR
k + bR

k t + cR
k t2)2 + (aI

k + bI
kt + cI

kt2)2,
(5)

where xR and xI are the real and the imaginary parts of x, respec-
tively. The instantaneous phase for each component is given by:

φk(t) = 2πkf0t + atan

„
aI

k + bI
kt + cI

kt2

aR
k + bR

k t + cR
k t2

«
. (6)

Finally, the instantaneous frequency is obtained by differentiating
the continuous instantaneous phase:

fk(t) =
1

2π
φ′k(t)

= kf0 +
1

2π

(aR
k bI

k − aI
kbR

k ) + 2t(aR
k cI

k − aI
kcR

k ) + t2(bR
k cI

k − bI
kcR

k )

m2
k(t)

(7)
A feature of the model worth noting is that the second term of the
instantaneous frequency depends on the instantaneous amplitude.

2.4. Towards the target model

Following the same idea as in a previous work [7], we decompose bk

and ck into two components one collinear and the other orthogonal
to ak, yielding

bk = ρ1,kak + ρ2,kjak (8)

and
ck = σ1,kak + σ2,kjak, (9)

where ρ1,k, ρ2,k, σ1,k, and σ2,k are the projections of bk and ck onto
ak and jak, respectively. Mathematically, the projections are given
by:

ρ1,k =
aR

k bR
k +aR

k bR
k

|ak|
2 , ρ2,k =

aR
k bI

k−aI
kbR

k

|ak|
2 ,

σ1,k =
aR

k cR
k +aR

k cR
k

|ak|
2 , σ2,k =

aR
k cI

k−aI
kcR

k

|ak|
2 .

(10)

With this notation, eq. (4) can be rewritten as:

ŝ(t) =
KX

k=−K

ak

ˆ
1 + (ρ1,k + jρ2,k)t + (σ1,k + jσ2,k)t2

˜
ej2πkf0t.

(11)
Finally, from eq. (3) and (11), an estimate of the kth chirp compo-
nent parameters can be obtained as follows:

8>>>>>>>>>><
>>>>>>>>>>:

Âk = |ak|

φ̂0,k = � ak

γ̂1,k = ρ1,k

φ̂1,k = ρ2,k

γ̂2,k = σ1,k + ρ2
2,k/2

φ̂2,k = σ2,k − ρ1,kρ2,k

. (12)
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3. ESTIMATION

3.1. Least square estimate

Let us consider a speech signal s(t) at time instants t−N , ..., tN ∈
[−t0, t0] and let us assume that both the model order K and an es-
timate of the local fundamental frequency f0 are known. The es-
timation of the complex quantities {ak, bk, ck}

K
k=−K is then done

through Least Squares. In matrix form, the solution is given by:
2
4a

b

c

3
5 = (EHW HWE)−1EHW HW s, (13)

where a, b, c and s are the vectors constructed from ak, bk, ck and
s(t), respectively. W is a diagonal matrix whose diagonal elements
are the weights typically defined by a Hamming window [9]. Finally,
E = [E0|E1|E2] where the Ei submatrices for i = 0, 1, 2 are given
by:

Ei =

2
6664

ti
−Nej2π(−K)f0t

−N ... ti
−Nej2πKf0t

−N

ti
−N+1e

j2π(−K)f0t
−N+1 ... ti

−N+1e
j2πKf0t

−N+1

...
...

...
ti
Nej2π(−K)f0tN ... ti

Nej2πKf0tN

3
7775
(14)

It is important to note that the length of the window should be
at least 3 pitch periods to avoid matrix ill-conditioning. We chose
a length of 4 pitch periods, providing a balance between overfitting
and underfitting.

3.2. Iterative Estimation

Once the phase parameters (φ̂1,k, φ̂2,k) of the signal have been es-
timated using eq. (12), they can be used to define a new basis for
subsequent signal analysis. Hence we suggest an iterative procedure
where, at each iteration, the signal is modeled by:

ŝ(t) =
KX

k=−K

(ak + bkt + ckt2)ej(2πkf0t+φ̂1,kt+φ̂2,kt2), (15)

where ak, bk and ck are again complex coefficients estimated by the
Least Squares method. Technically, the new basis is plugged into
the complex exponentials of (14). This procedure is repeated until
convergence occurs, i.e. once a criterion (e.g. based on the evolution
of the LS error) is satisfied.

4. RESULTS

4.1. Synthetic chirp signals

The proposed time-varying model is first applied to a synthetic
mono-component chirp signal whose amplitude varies according to
a second order polynomial. The chirp signal is given by

x(t) = (1− 100t + 104t2)ej2π(400t+3000t2+10t+0.01)

and thus has a chirp rate of 6000Hz/s. The analysis was performed
at f0 = 400Hz while the instantaneous frequency at the center of
the analysis window is 410Hz. The upper panels of Fig. 1 show
the real part of the original chirp signal and the real part of the re-
constructed signal as well as their instantaneous frequencies. In the
lower panels, the iterative scheme has been applied and after 2 itera-
tions the instantaneous frequency has been correctly estimated.
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Fig. 1. Mono-component synthetic chirp signal. Left panels: origi-
nal and reconstructed signals. Right panels: original and estimated
instantaneous frequencies.

Another example is given on a synthetic signal consisting of ten
harmonically related chirp components. The results presented in Ta-
ble 4.1 show the potential of the proposed iterative scheme to cor-
rectly identify the chirp rates.

harmonic chirp rate 1 iter 10 iter
1st 200 55 200
2nd 400 194 400
3rd 600 353 599
4th 800 457 800
5th 1000 515 1000
6th 1200 525 1199
7th 1400 519 1400
8th 1600 490 1600
9th 1800 456 1799
10th 2000 441 2000

Table 1. Multi-component synthetic chirp signal: estimated chirp
rates in Hz/s after 1 and 10 iterations.

4.2. Real Speech

One female voice is analyzed in Fig. 2. The sampling frequency of
the signal was 16kHz and the number of harmonics was set to 5.
In this example, after careful manual inspection of the evolution of
the glottal cycle, it was observed that within the analysis window,
the fundamental frequency approximately decreases from 250Hz to
210Hz. From Fig. 2, it can be seen that the estimated f0 tracks can
be recovered, while the other harmonics also exhibit plausible fre-
quency variations.

It must be pointed out however that for speech signal the chirp
rate is larger for higher harmonics. Consequently, there may be cases
in which the Taylor approximation in eq. (2) is not valid. To han-
dle such cases, it is recommendable to use a single fan-chirp rate α
estimated from only the first K0 components. Then, the analysis is
carried using chirp rate kα for the kth harmonic. A weighted av-
erage of the chirp rate of each component, α̂ = 1

K0

PK0

k=1 φ̂2,k/k,
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Fig. 2. 60ms of female speech. Upper panel: Original signal and the
reconstructed signal (SNR = 15.7dB). Lower panel: The estimated
frequency evolution of the 5 first harmonics.

is used as an estimate of the single chirp rate, α. We apply this
strategy to the analysis of the /vazivaza/ speech signal depicted on
Fig. 3 together with its fundamental frequency contour. The estima-
tion of the fundamental frequency and of the number of harmonics
is done using time-domain (autocorrelation-based) and frequency-
domain methods respectively as in [9]. Then, the harmonic part of
the speech segment is analyzed pitch synchronously with a two pitch
period window. Fig. 4 shows that the proposed analysis procedure is
able to capture harmonic trajectories that are, in most cases, contin-
uous. Note thatK0 is set to 4 in this example.
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Fig. 3. Speech signal /vazivaza/ and the corresponding pitch contour.

5. CONCLUSION

We have presented a novel model for the analysis of the deterministic
part of speech which, for each sinusoidal component, captures mod-
ulations in both amplitude and frequency. The ability of the model to
gradually estimate and account for the linear evolution of the com-
ponent frequencies was shown. Forthcoming works will be dedi-
cated to the application of the proposed time-varying speech model
in speech synthesis and speech modification.
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Fig. 4. Analysis of harmonic part of a speech signal /vazivaza/.
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