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ABSTRACT

This paper presents a data-driven approach to the modelling of voice
source waveforms. The voice source is a signal that is estimated by
inverse-filtering speech signals with an estimate of the vocal tract fil-
ter. It is used in speech analysis, synthesis, recognition and coding to
decompose a speech signal into its source and vocal tract filter com-
ponents. Existing approaches parameterize the voice source signal
with physically- or mathematically-motivated models. Though the
models are well-defined, estimation of their parameters is not well
understood and few are capable of reproducing the large variety of
voice source waveforms. Here we present a data-driven approach
to classify types of voice source waveforms based upon their mel-
frequency cepstrum coefficients with Gaussian mixture modelling.
A set of ‘prototype’ waveform classes is derived from a weighted
average of voice source cycles from real data. An unknown speech
signal is then decomposed into its prototype components and resyn-
thesized. Results indicate that with sixteen voice source classes, low
resynthesis errors can be achieved.

Index Terms— Voice source, inverse-filtering, closed-phase
analysis, LPC

1. INTRODUCTION

A number of voice source models have been proposed that fall into
two main categories: those motivated by a need for compact math-
ematical descriptions including Rosenberg [1], Fant [2], Klatt and
Klatt [3] and Plumpe and Quatieri [4], and those motivated by phys-
ical modelling such as Ishizaka and Flanagan [5] and Story and
Titze [6]. The proposed approach uses real voice source waveforms
to create a codebook of ‘prototype’ signals, using Gaussian mixture
modelling (GMM) [7] to classify cycles of the voice source based
upon their mel-frequency cepstral coefficients (MFCCs) [8].

The motivation for modelling the voice source waveform, ud(n),
comes from the source-filter representation of speech production
where an all-pole model of the vocal tract is excited by a source
waveform,

s(n) = ud(n) +

pX
k=0

aks(n− k), (1)

where s(n) is the speech signal and ak are the frame-dependent vo-
cal tract filter coefficients of order p (the frame dependence on ak

is implicit for the remainder of the paper). This description of the
vocal tract is beneficial because a) linear prediction methods [9] are
readily available to model the vocal tract as an all-pole filter, b) they
provide a compact and accurate representation that can be efficiently
quantized, and c) inverse-filtering can be achieved by filtering with
an FIR filter whose zeros cancel the poles of the vocal tract. By

contrast, estimation of the parameters of a voice source model to re-
produce an approximation to ud(n) is less straightforward and is an
area of ongoing research [4, 10]. Additionally, some existing mod-
els fail to capture all the degrees of freedom of the voice source,
particularly features like the ripples caused by a nonlinear interac-
tion between the glottis and vocal tract [11, 12]. By using a GMM
to classify cycles of ud(n) based upon their MFCCs, the proposed
approach captures all significant features that are common to each
class. While MFCC features may be suboptimal, they provide a good
starting point owing to their extensive use in speech recognition.

The importance of accurately reproducing ud(n) in speech syn-
thesis is described in [13], where experimentation has shown that a
parallel formant synthesizer can generate short speech segments in-
distinguishable from real speech provided it is driven by an inverse-
filtered typical natural vowel from the same talker. A related ap-
proach is described in [14] where cepstrum coefficients are used to
generate a single average voice source waveform from which any
speech signal can be synthesized. The concept of voice source code-
books, derived from synthetic waveforms, has also been proposed
for synthesis [15] and coding [16] with notable benefits over single-
waveform models. Our method differs in that a set of amplitude-
and scale-normalized prototype voice source waveforms are gener-
ated from a weighted average of true voice source waveforms from
a large database of real talkers. Resynthesis involves calculating the
probability that a test cycle is a member of each of the prototype
classes, performing a weighted average of the prototype voice source
waveforms, then scaling to reproduce the correct duration and ampli-
tude. The result is a method for accurately and succinctly analysing
and resynthesizing voice source waveforms, with potential uses in
speech analysis, synthesis, coding, enhancement and recognition.

This paper is organized as follows. In Section 2, the concept
of a voice source ‘prototype’ is introduced and then derived from
real data. Section 3 demonstrates the decomposition of an unknown
voice source into its prototype components its subsequent resynthe-
sis. Conclusions are drawn in Section 4.

2. MODEL TRAINING

2.1. Overview

The aim of voice source analysis is to characterize and model the
voice source waveform, ud(n), obtained by inverse filtering the
speech signal, s(n), with an estimate of the vocal tract filter. The
APLAWD database [17] contains ten repetitions of five short sen-
tences by five male and five female talkers and provides all the data
(approximately 110,000 glottal cycles) for model training. LPC
autoregressive (AR) coefficients [9], ak, model the vocal tract filter
for every larynx cycle of every utterance in the training corpus. The
glottal closure instants (GCIs), nc

i , are obtained using the SIGMA
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Fig. 1. System diagram for model training.

algorithm [18] applied to EGG signals recorded contemporaneously
with the speech signal. Model training determines a set of classes,
ωm, m ∈ {1, . . . , M} with associated ‘prototype’ waveforms that
can describe voiced regions of ud(n). Male and female data was
mixed so as to provide a gender-independent representation of all
voice source waveforms in the training set.

2.2. Segmentation

The result of the closed-phase inverse filtering, ud(n), is first di-
vided into scale- and amplitude-normalized overlapping two-cycle
glottal-synchronous frames so that classification is based on wave-
form shape only,

ui =�β
α κud(n), n ∈ {nc

i , . . . , n
c
i+2 − 1}, (2)

where �β
α denotes a resampling operation of factor β

α
, β = 2tmaxfs,

α = nc
i+2−nc

i and κ is a gain factor that normalizes A-weighted en-
ergy [19]. The maximum period of voiced speech is tmax, set to 20
ms and fs is the sampling frequency (Hz). Using two-cycle frames
ensures that high-energy glottal closures occur in the centre of the
window which aids the quality of resynthesis [20] and ensures that
the excitation from glottal closure is not attenuated by windowing in
the subsequent feature extraction.

uT
i form the rows of an (N × L) data matrix,

U = [u1,u2, . . . ,uN ]T . (3)

Converting the voice source waveform to the mel-cepstrum
domain makes it suitable for clustering using diagonal covariance
Gaussian mixture models. Classifying the rows of U begins by
deriving C Mel-Frequency Cepstrum Coefficients (MFCCs) [8] for
each glottal period i, represented by an (N × C) feature matrix C
with rows ci. The cepstrum coefficients are computed using 29 mel
filter banks, discarding the ‘0-th’ and last 16 coefficents leading to
the dimensionality C of ci equal to 12.

The likelihood of feature vector ci is computed as a weighted
sum of Gaussians,

f(ci) =
MX

m=1

p(ωm)f(ci|ωm) (4)

=
MX

m=1

p(ωm)
exp(− 1

2
(ci − μm)T Σ−1

m (ci − μm))p
(2π)C |Σm|

where p(ωm), μm and Σm are the weight, mean vector and covari-
ance matrix (diagonal) of the m-th mixture component ωm. The
parameters are estimated using the EM-algorithm [7], terminating
the iteration after 100 times or when the increase in log likelihood
falls below 0.0001.
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Fig. 2. Fisher’s Discriminant as a function of M classes.

The probability that cluster m generates ci is

p(ωm|ci) =
p(ωm)f(ci|ωm)

f(ci)
. (5)

Let the (N ×M ) probability matrix P contain p(ωm|ci)∀m, i,

P =

2
64

p(ω1|c1) · · · p(ωM |c1)
...

. . .
...

p(ω1|cN ) · · · p(ωM |cN )

3
75 . (6)

2.3. Model Complexity

Fisher’s Discriminant, Fm [21], measures the ratio of the intra- to
inter-class variances; the higher the figure the more separated the
classes. Randomly selecting half the speech samples as training data
and the other half as test data, Fm was calculated, varying M from
2 to 64. Fig. 2 shows Fisher’s Discriminant as a function of M .
Asymptotic behaviour is seen beyond around M = 16 which is used
from this point onwards. For the purposes of coding, for example,
small M is desired to reduce data bandwidth.

2.4. Prototype Generation

The mean prototype voice source waveform, ūm, for class ωm is
calculated by soft classification of feature ci. Prototypes are derived
from a weighted average of time-domain waveforms, ui, using the
probabilities p(ωm|ci) as weights.

ūm = κm

X
i

p(ωm|ci)ui, (7)

where κm is a constant that normalizes A-weighted energy. The ūm

form the rows of the (M × L) prototype matrix,

Ū = [ū1, ū2, . . . , ūM ]T = PT U. (8)
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Fig. 3. Three of the set of sixteen prototypes, ūm, with varying
ripple from nonlinear coupling between the glottis and vocal tract.

Many existing models of voice source waveforms include some
scale-independent parameters, including the ‘basic shape param-
eter’ [2], defined as min(ud(n))/max(ud(n)), the open quotient
(OQ) [3], and the duration of the return phase [2]. In [4], a poly-
nomial ‘fine’ detail model describes the error between measured
ud(n) and the Fant model, attributed mainly to nonlinear interaction
between the glottis and vocal tract.

Fig. 3 shows 3 of the 16 classes. The prototypes exhibit very low
noise and very little ‘overshoot’ from LPC framing errors [22]. The
basic shape parameter is seen varying from high in Fig. 3(a) to low
in Fig. 3(c) and, at the same time, fine-detail ripple varies and is most
pronounced in Fig. 3(c). The open phase and duration of the return
phase in Fig. 3(c) are noticeably longer. The remaining prototypes
exhibit variation in all these parameters and, additionally, provide an
insight into interdependencies between them.

3. ANALYSIS/SYNTHESIS

A test utterance can now be decomposed into AR coefficients, ak,
and voice source prototypes, ūm. In a similar manner to the signal
framing for prototype training in (2), the test utterance is split into N
overlapping frames, ui, where frame i contains two cycles of voiced
speeeh. The voice source decomposition for frame i is

γi = [γ1,i, γ2,i, . . . , γM,i] = [p(ω1|ui), . . . , p(ωM |ui)]. (9)

Figure 4 gives an example of voice source decomposition of the all-
voiced utterance, “Why are you early you owl?,” spoken by a male
speaker not included in the training corpus, showing a) the speech
signal, b) max

m
p(ωm|ci), passed through a moving mode filter of

length 5, and c) p(ωm|ci) as a reverse gray-scale for each mixture
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Fig. 4. Speech signal analysis. a) Original speech signal, b)
max p(ωm|ci), mode-filtered with length 5, c) probability matrix
p(ωm|ci), where black:= (p(ωm|ci) = 1).

component, black indicating a probability of one and white a prob-
ability of zero. The figure shows that most voiced cycles can be
decomposed into a compact prototype set; for many cycles the prob-
ability of membership of a single class is close to 1 and inter-cycle
class membership is piecewise-constant, suggesting significant po-
tential run-length encoding coding gains. Informal tests have shown
that this approach performs similarly for female voices.

We define a set Mi ⊆ Mall, Mall = {1, . . . , M}. Mi con-
tains the class indices that produce the highest likelihood, reduc-
ing computational complexity. In Fig. 4(c), at time 0.8 s, a sensible
choice is |Mi| = 3 so that Mi = {5, 8, 11}. A cycle of the voice
source signal can then be resynthesized from the prototypes, ūm,
with the decomposition terms,

ûi =
X

m∈Mi

γm,i

“
�β

α κūm

”
, (10)

where �β
α resamples ūm to length (nc

i+2 − nc
i ) for cycle i and κ is

a gain factor to reproduce the same A-weighted energy as the source
cycle. An approximation to the full ud(n) is synthesized by window-
ing ûi with a Hamming window, wi, shifting to centre the waveform
on nc

i and summing,

û(n) =
X

i

(ûi �wi) ∗ δnc
i
, (11)

where � is a Hadamard (element-by-element) product, ∗ a linear
convolution operator and δnc

i
is a unit delta placed at GCI nc

i . The
speech signal can be resynthesized in a similar manner to (1),

s(n) � ŝ(n) = û(n) +

pX
k=0

aks(n− k). (12)

Fig. 5 shows, for Mi = Mall ∀i, a) s(n) and resynthesized
ŝ(n) and b) the corresponding segment of ud(n) and its resynthe-
sized approximation, ûd(n). The signal-to-noise ratio for the seg-

ment shown, SNR = 10 log10

P

n
s2(n)

P

n
[s(n)−ŝ(n)]2

= 11.75 dB, shows a

high correlation between the two sets of signals.

3967



0 10 20 30 40 50 60
−1

−0.5

0

0.5

1
(a)

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1
(b)

Time (ms)

Fig. 5. Original and resynthesized signals. a) Speech signal, s(n),
(blue) and resynthesized, ŝ(n), (red), b) Voice source waveform,
ud(n), (blue) and resynthsized, ûd(n), (red).

The proposed method has been trained and tested on modal
voiced speech only. An obvious extension is a generalization
that processes noisy frames such as breathy, unvoiced and mixed
voiced/unvoiced speech waveforms. Research into alternative ap-
proaches for creating prototypes is necessary due to the de-noising
effect of the existing averaging procedure.

4. CONCLUSIONS

A novel, data-driven technique for the modelling of voice source
waveforms has been presented. It has been shown that, by classify-
ing cycles of inverse-filtered speech according to 12 mel-frequency
cepstrum coefficients, 16 prototype waveforms with associated
means, diagonal covariance matrices and weights, can be derived.
This allows the decomposition of an unknown inverse-filtered modal
voiced speech signal into a weighted prototype description which
can be resynthesised with an SNR of up to ∼12 dB. The proposed
technique has potential uses in speech analysis, synthesis, coding,
enhancement and recognition by providing a compact and reliable
description of glottal waveforms.
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