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ABSTRACT

Voice search or 411-service is the task that finds a ranked set of di-
rectory listings that match a spoken query, where the target entries
in the listing database and the spoken query may differ moderately
in their syntactic form. While the conventional paradigm uses a two-
box input (location + name), a single-box paradigm to voice search
can allow users to provide all the information in a single utterance,
thereby increasing query efficiency. Furthermore, the scalability of
traditional methods used in the two-box paradigm is infeasible, and
alternative strategies that sacrifice accuracy are normally adopted.
This work presents a scalable algorithm for directory search over a
nationwide database of listings (millions of entries) without compro-
mising recognition accuracy.

Index Terms— voice search, directory assistance, 411-service,
spoken query processing, speech recognition, vForms

1. INTRODUCTION
Searching data by voice has been an active area of research since the
early days of second generation ASR [1]. The degree of syntactic
diversity in which a spoken query can invoke a target database en-
try (d(e, E)) spans a spectrum of related applications. As shown in
Fig. 1, three main categories of application scenario can be identi-
fied: directory assistance (DA), voice search (VS) and spoken query
processing (SQP).
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Fig. 1. Spectrum of related applications applications.

• DA: On the one extreme, directory assistance is the task with
the longest history. In DA, as traditionally defined, fully con-
strained (FC) grammars can be used to anticipate the usu-
ally narrow syntactic formulations of queries in response to
a rather rigid system prompt message (e.g. name please).
Under this scheme, the “entry search” becomes an “acous-
tic search” of the path that best explains the observed spoken
query within the ASR recognition network, therefore ASR
and search form a single task.

• VS: In the center of the spectrum, voice search needs to han-
dle moderate syntactic diversity. While spoken queries can
be short and casual in format, text database entries tend to be
lengthier and more formal. For example, the text entry: Geor-
gia Institute of Technology, could be referred to as Georgia
Tech in a spoken query. While an ontology-assisted scheme
can certainly provide a mechanism that anticipates some of
the alternate syntactic forms of a spoken query, unanticipated
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forms must be tolerated. Stochastic language models (SLMs),
or grammars can tolerate discrepancies at the cost of an ad-
ditional parsing layer that performs the search independently
and treats ASR errors as typos. Therefore, ASR and search
are traditionally disjoint tasks.

• SQP: On the other extreme of the spectrum, spoken query
processing attempts to find database entries that are seman-
tically (but not necessarily syntactically) close to the spoken
query. Users may be oblivious of the textual content of a tar-
get entry or whether it indeed exists. Spoken queries tend to
semantically describe what a relevant document might con-
tain. It is the semantic gap between the spoken query and
an entry what determines its relevance. While SQP remains
the most interesting challenge in the spoken retrieval of docu-
ments, the absence of a proper corpus upon which a compre-
hensive evaluation can be performed has prevented this task
from being fully explored [2].

The task we address in this work is single-box VS, a paradigm
that lets users speak all the information in a single utterance (as op-
posed to the two-box paradigm that first asks for the city-state fol-
lowed by the business name or category). Although FC grammars
are optimum for modeling known simple languages, they are im-
practical for complex languages such as in single-box VS because
of their rigidness and tremendous amount of memory required as the
language grows. Methods currently used in the two-box paradigm
are not scalable to the single-box case because of the large vocabu-
lary in nationwide-databases.

This work presents a scalable algorithm for directory search
over a nationwide database of listings (millions of entries) without
severely compromising the recognition accuracy.

2. BACKGROUND
2.1. Traditional VS methods
There are three key challenges that VS methodologies must address:
1) anticipating the diverse syntactic forms in which each listing entry
can be verbally queried; 2) modeling the spoken queries (language
modeling over the spoken utterances as opposed to traditional well-
formed text documents), and 3) searching for the relevant entry(-ies)
with high efficiency.

One traditional method for VS is based on signature grammars
[3] which automatically infers multiple query variants from the list-
ing itself and constructs a FC grammar from them. While FC gram-
mars indeed integrate the search and ASR into a single task (see
Fig. 2-a), this scheme is not scalable to very large databases and it
is fragile to queries that do not follow the enforced grammar rules.
This has motivated statistical methods based on machine translation
and word SLMs [4, 5]. Unlike FC grammars, word SLMs can rec-
ognize arbitrary word sequences at the expense of accuracy. As a re-
sult, the search process that finds the relevant entry(-ies) is deferred
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to an independent post-ASR task (see Fig. 2-b), such as a vector
space model (VSM) retrieval or a statistical retrieval [6], adding up
to the CPU/memory consumption. Although the scalability issues
with word SLM grammars are not as severe as with FC grammars,
their large vocabulary (>100 K) still makes them CPU/memory in-
tensive.

The strategy we adopted in this work combines ASR and search
as an integrated task in a two-pass scheme (see Fig. 2-c) that is
scalable to large databases such as nationwide business listings. This
methodology is based on VFORMS [7], originally designed for DA.
Section 2.2 presents a brief description of the principles, and Section
3.1 introduces VFORMS for VS.

SLM-VS

ASR
Search

FC
(a) (c)

VFORMS

(b)

Fig. 2. Overlap of search and ASR tasks in VS paradigms.

2.2. VFORMS for DA
In DA applications, each database entry (or record) is organized in a
multiplicity of fields. Inter-field information (constraints) can lever-
age ASR to improve its accuracy. Exploiting this information, how-
ever, is a task difficult to accomplish in scalable algorithms. The
goal of VFORMS is to incorporate inter-field constraints into ASR
and preserve scalability properties.

By design, VFORMS indexes (off-line) each database entry us-
ing sub-word units (e.g. phone n-grams), hence, we refer to these
units as phonedices (πk). In order to preserve scalability properties,
VFORMS employs ASR as a lightweight operation (e.g. low CPU
and memory requirements). The main components are depicted in
Fig. 3 and the steps summarized as follows (see [7] for details).

ASR Idx LU ASR
LM LM

phn
shortlist

s(t) R(2)

LM(S)
I

R(1)

LM(p)
N -gram

Fig. 3. VFORMS for DA.

1. Indexing (off-line): Assemble the reverse-index file I
that tabulates the database entries containing each of the
phonedices I = (πk : ∪ei�πk

ei).

2. 1st-pass recognition (on-line): Use an n-gram phonotactic
grammar LM(p) to obtain the phone-lattice R(1) from the
spoken query s(t).

3. Index access (on-line): Use I to narrow down a shortlist S
of entries that contain the phonedices recognized in R(1).

4. 2nd-pass recognition (on-line): Use the top entries in S to
dynamically assemble a FC grammar LM(S), and do a second
pass ASR to obtain the final recognition R(2).

The non-trivial syntactic diversity of queries in VS imposes an addi-
tional challenge.

3. METHODOLOGY
3.1. VFORMS for VS
The problem being addressed in this work is single-box VS to a
database of nationwide business listings, a novel paradigm that dif-
fers from the traditional two-box VS (where location is first entered

and then a business name). Single-box VS must be able to handle
partial queries, i.e. those where no location (city/state) is present.
This section describes how the proposed methodology addresses the
aforementioned key challenges under this paradigm.

For the first challenge, we must devise a mechanism for convert-
ing the i-th listing entry (ei) into a diverse set of plausible queries
(Ei), which are syntactically distinct yet semantically equivalent:

ei → Ei =
[
j

νi
j . (1)

In order to infer such a set, we assume that the query formulation
process invokes prior knowledge of the language (G) and a vague
notion of ei to synthesize a simplified and coherent word sequence
as shown in Fig. 4. One choice of model for G is a word n-gram:
LM(G).

Formulation
Query
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ei

s(t)
(G)

Fig. 4. A simple spoken query formulation model.

Let the i-th entry be formed by a sequence of words ei =
(wi

1, . . . , w
i
Ni
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Ẽi
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Ni
(wi
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i
Ni

), (2)

be the union of all Ni! word permutations. The subset of word se-
quences in Ẽi

a with likelihood greater than p(ei; LM(G)) are selected
as alternative valid word sequences for that entry:

Ei
a =

[

ẽi∈Ẽi
a

1
“
p(ẽi; LM(G)) > p(ei; LM(G))

”
· ẽi. (3)

However, the number of words in the listing name (Ni) is often well
beyond what a person would presumably speak in a query, thus Ẽi

a

can grow out of hand. In order to prevent this, we limit the length of
the entry by choosing the word permutation with Nmax words with
maximum likelihood.

Ẽi
clip = PermNi

Nmax
(wi

1, . . . , w
i
Ni

), (4)

ei
clip = argmax

ẽi∈Ẽi
clip

p(ẽi; LM(G)). (5)

In the case Ni!/(Ni − Nmax)! (the size of Ẽi
clip) is too large (hun-

dreds), Eq. 4 can be limited to only sequences that preserve the
original word order. The resulting sequence ei

clip is used in place of

ei and passed to Eq. 2 where the word order is scrambled.
Furthermore, length diversity of the spoken queries ought to be

anticipated. We generated shrunken versions of ei using Eq. 4, for
lengths shorter than Nmax, and selected those with likelihood greater
than the original sequence (word-averaged) as valid. We denote this
set as Ei

b. The final set, introduced by Eq. 1, becomes Ei = Ei
a∪Ei

b.
The second challenge is to acquire prior knowledge about the

language used in spoken queries. Under the VFORMS methodology,
a phone n-gram language model LM(p) is first used to generate the
phone-lattice R(1). The use of a phone n-gram in VFORMS is key to
maintain scalability properties, making ASR a lightweight process,
capable of achieving high accuracy with low CPU and memory re-
quirements. As the number of database entries grows, the memory
required for a phone n-gram remains fixed, which is not the case for
a word n-gram. Moreover, the inclusion rate of the correct sequence
is higher for phone n-grams than for word n-grams.
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Although it is reasonable to believe that a general purpose En-
glish phonotactic language model LM(p) would be suitable for any
task, the language used in VS has a lower perplexity than English in
general. The high occurrence of a small set of words (state and city
names, business categories, etc.) biases the phone statistics. Section
4.2 explores this issue experimentally.

The third challenge in VS pertains to finding the entries relevant
to the query. A search process, in general, first finds the presence of
index-terms in the query, and then locates the set of best matching
entries. Conventionally, the domain of the index-terms is the set
of words in the vocabulary (or some transformation of them). The
recognition word best-path or word-lattice is then used to access a
form of reverse-index file that returns the set of relevant entries. In
this methodology, the domain of the indices is the set of phone n-
grams, or phonedices (πk).

Once a set of verbalizations is obtained (Ei =
S

j νi
j) for every

ei, the reverse index I maps every phonedex against a list of entries
containing it:

I =
[
k

0
B@πk :

[
νi

j�πk

(i, j)

1
CA . (6)

Upon phone-recognition, the set phonedices present in R(1) are ex-
tracted, along with their normalized expected path cost: C (negative
log likelihood), and assembled in Q:

Q =
[

πk∈R(1)

(πk, C(πk)) , (7)

which is used to access the reverse-index file I, and to assemble the
shortlist S which is a sorted list of the best-matching νi

j . The search
process now becomes an acoustic search with a language model:
LM(S) that consists of:

LM(S) =
[

νi
j∈S

νi
j . (8)

With this methodology, we integrated search as part of the speech
recognition process.

3.2. Implementation remarks
Typically, the databases accessed by VS exhibit some structure that
allows entries to be represented at different levels of semantic gran-
ularity. At the finest level, each entry represents a distinct unit (or
concept). At a coarser semantic level, however, entries are tagged
into possibly overlapping broad categories. For example, a business
could be uniquely identified as Taco Express in Atlanta Georgia, or
by a broad category like Mexican restaurants, or just restaurants. As
a heuristic, we assume that the location information, if any, is given
at the end of the query. The actual entry becomes:

< ei > ::= < ei
name > [< ei

city >][< ei
state >]

˛̨

< ei
cat > [< ei

city >][< ei
state >]. (9)

WFSA (weighted finite state automata) provide a well defined
efficient and compact framework for representing recognition net-
works in ASR at different layers of abstraction (see [8] for details).
Typically, the recognition network is formed by composing three
WFSTs (weighted finite state transducers): C for the phone-context
dependency, L for the word to phones mapping and G for the word-
level grammar; thus the final network is called CLG. For VS, the
same WFSA framework can be extended to include a higher layer of
abstraction that represents the relevant entries. The fourth layer: S is

a transducer that translates word sequences into database entry-IDs,
forming the expanded VS network: CLGS = C ◦ L ◦ G ◦ S.

For those word sequences, such as Mexican restaurants, with
multiple relevant entries, S yields a union of the corresponding
entry-IDs, which could be later weighted by other criteria (ratings,
distance, sponsorship, etc.).

0 1mexican:_eps 2restaurants:_eps 3

_eps:the-grill

_eps:taco-express

_eps:rosa

Fig. 5. Illustrative example of S transducer.

4. EXPERIMENTAL ANALYSIS
4.1. Case Study: Voice search for business listings
Inspired by YELLOWPAGES.COM

TM, the VS application scenario
being studied is single-box verbal access to a nationwide directory
of business listings1. A set of ten million nationwide business list-
ings was collected. The information of each listing is organized in a
multiplicity of fields including business name, category, telephone,
address (street, city, state), etc. Additionally, a collection of ten mil-
lion text queries was available from use logs of a traditional two-box
application (business-name/category plus location). The vocabulary
size of the directory was on the order of 850 K words.

A test set of 1430 spoken queries was recorded with an off-the-
shelf smart-phone. The vocabulary size observed was 1108 distinct
words, 994 distinct utterances and an average of 4.3 words per query.
The content of such queries ranged from a single-word category to
the name of a business and its location.

4.2. Phone recognition
This experimental analysis examines the complexity of the first-pass
ASR in the proposed methodology (phone recognition). We used a
generic US-English acoustic model in the following experiments (no
device-specific models were used).

A total of six different phonotactic grammars LM(p) were con-
sidered. We trained a 4-gram and a 5-gram with three separate
data-sets, each with ten million samples: WP-LN (name+city+state
white-pages listings), YP-LN (name+city+state yellow-pages list-
ings) and YP-TQ (actual text queries from yellow-pages). Table 1
summarizes the perplexity found for these six phonotactic gram-
mars. We observed that the 5-gram LM(p) consistently has lower
perplexity than its 4-gram LM(p) counterpart, and that the phone
statistics learned from the YP-TQ data-set were the closest to the
ones observed in the test set, thus we selected this combination in
the subsequent experiments.

WP-LN YP-LN YP-TQ

phone 5-gram 18.20 14.27 10.25

phone 4-gram 26.99 19.34 13.82

Table 1. Perplexity of two phone n-gram LMs trained with ten
million instances of WP-LN: white-pages listings, YP-LN: yellow-
pages listings and YP-TQ: yellow-pages text queries.

The PER (phone error rate), shown in Fig. 6-a as 100 minus
phone accuracy, converges to 33% at a real-time (RT) factor of 0.5
for a phone 5-gram LM, and to a PER of 37% for the phone 4-gram
LM. Notice the knee is around 0.2–0.3 RT.

1The research being conducted is academic and exploratory, disconnected
from any business or services provided by any company.
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Fig. 6. CPU (a) and memory (b) usage.

Under the proposed methodology, the CPU and memory us-
age of the phonotactic LM(p) remain constant as the number of
database entries (business listings) grows. Figure 6-b shows the size
in megabytes of the CLG for two phonotactic grammars (labeled
SLM-C and SLM-D), a word 3-gram LM (labeled SLM-B) trained
with the same ten million YP-TQ text queries used to train these
phone n-grams, and a conventional word 3-gram LM (labeled as
SLM-A) trained with ∪iE

i (from Eq. 1) for different database sizes.

We observed that the memory required by SLM-C (phone 5-
gram) is smaller than the one required by the traditional SLM-A
(word 3-gram LM) for databases larger than 600 K entries; while
SLM-D (phone 4-gram) is virtually always smaller than SLM-A.
Notice how the memory required by SLM-A grows with the database
size. The additional memory required by LM(S) is negligible (kilo-
bytes) as well as the time consumed to perform the second-pass
recognition. Given that the reverse-index file I is read-only, a single
copy can be loaded into memory and shared across multiple simul-
taneous VS sessions. Conventional reverse-index file management
schemes are applicable.

4.3. Search
For these experiments, phonedices were set to phone-trigrams, the
LM(p) was set to SLM-C (phone 5-gram), and the auxiliary lan-
guage model LM(G) (used offline) was set to a word-bigram trained
with the union of YP-TQ and YP-LN.

By design, VFORMS for VS recognizes only word sequences
that have been inferred from the database entries (∪iE

i), therefore
any query that targets an “out of directory” (OOD) business listings,
e.g. an unregistered or a poorly expanded listing, will result in mis-
recognition. Confidence scores ought to be used to detect and han-
dle the OOD cases. Three moderately sized random subsets of the
business listings database were extracted (with 100 K, 1 M and 4 M
entries). In order to prevent OOD from occurring, the corresponding
listings of any OOD-queries were appended to the set of database
entries (∪ie

i).

For comparison, we report the performance of two traditional
single-pass ASR systems, each using a word 3-gram as language
model: SLM-B (trained with ten million instances of YP-TQ) and
SLM-A (trained with ∪iE

i for the three databases). Notice that
while conventional word SLMs recognize word sequences that still
need to be parsed and handled by a separate search system, the
VFORMS-based method returns the recognized word sequence along
with the set of relevant entry-IDs without the need of any further
search.

Table 2 shows the word error rate (WER) and sentence error rate
(SER) in the test set of spoken queries, for the SLM-A, SLM-B and
the proposed VFORMS-based method.

Notice that the SER of VFORMS is consistently lower than the

Method Train Data nr. of distinct νi
j WER SER

word SLM-B YP-TQ - 40.2% 74.4%

word SLM-A S100 K
i=1 Ei 1 M

31.8% 45.4%
VFORMS 29.3% 40.4%

word SLM-A S1 M
i=1 Ei 5.8 M

36.6% 53.4%
VFORMS 35.1% 49.2%

word SLM-A S4 M
i=1 Ei 20 M

39.3% 59.4%
VFORMS 38.2% 55.9%

Table 2. Query word and sentence error rates (WER, SER).

traditional word SLMs because VFORMS only recognizes entries
that exist in the directory, while the SLM may recognize sequences
that are not valid database entries. Bear in mind that although the
SER is an ASR performance measure, it sets a lower bound on
the search accuracy. For example, a SER of N% implies that the
search result will be correct at least 100 − N% of the time, be-
cause misrecognized sentences may still have the same semantics
(e.g. pizza/pizzeria). The acoustic mismatch present in the recorded
test set prevents error rates from dropping further at the moment,
however, acoustic model adaptation techniques can be applied to
improve the overall performance.

5. CONCLUSIONS
This work presented a scalable two-pass methodology for voice
search to a directory of nationwide business listings, based on the
VFORMS methodology. Three key challenges of VS were identified
and addressed. The memory requirements for the proposed method
scales up for large nationwide databases (million of entries), without
compromising accuracy with respect to conventional methods.

Future work will include an ontology inlet in LM(G) to allow a
richer expansion of semantically equivalent expressions for each list-
ing. A confidence score that can help VFORMS detect OOD queries
remains to be designed. Our current implementation starts the search
only after R(1) has been obtained, which adds a small yet intrinsic
delay. This could be mitigated by allowing a real-time construction
of the shortlist S. Additionally, computation can be further saved
if part of the likelihood calculation performed in the first pass is re-
used in the second.
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