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ABSTRACT 
 
This paper addresses the problem of using unstructured queries to 
search a structured database in voice search applications. By 
incorporating structural information in music metadata, the end-to-
end search error has been reduced by 15% on text queries and up to 
11% on spoken queries. Based on that, an HMM sequential 
rescoring model has reduced the error rate by 28% on text queries 
and up to 23% on spoken queries compared to the baseline system. 
Furthermore, a phonetic similarity model has been introduced to 
compensate speech recognition errors, which has improved the 
end-to-end search accuracy consistently across different levels of 
speech recognition accuracy. 

Index Terms— spoken language understanding; voice search; 
language model based information retrieval; HMMs; phonetic 
confusability, music metadata. 
 

1. INTRODUCTION 
Voice search [1] is a spoken language understanding (SLU) 
technology underlying many applications. It accepts users’ queries 
in spoken language and searches for the relevant entries in a 
database. Directory assistance (DA) [2, 3] is a typical voice search 
application, where users can use spoken queries to search for 
business or residential phone listings.  
     Media data (music, movies, etc.) is pervasive now in people’s 
everyday life. With the ever increasing capacity and reducing cost 
of storage, it is very common that uses have thousands of 
music/video entries in their mp3 players or media center PCs. 
Accessing a music/video title becomes more challenging.  Voice 
search technology can be applied in this scenario to provide a 
natural and efficient UI for users. In [4], a prototype in-car music 
search system is presented. In [5], an cognitive load sensitive 
spoken dialog interface for in-car tasks is reported. 
      Media (voice) search leverages the metadata associated with 
the media data. For example, each music entry in an mp3 player 
comes with the metadata about its title, artists’ name, album name, 
composer/conduct, etc. Different from the DA applications, the 
SLU needs to search a structured database – the metadata contain 
records with multiple fields. A user’s unstructured utterance may 
contain descriptions of one or multiple fields, which may not 
exactly match the entries in the structured database. For example, 
the query “Boyz II men hard to say goodbye” corresponds to the 
following structured metadata: 

   Artists: Boyz II Men 
   Title: It’s so hard to say goodbye to yesterday 
   Album: Legacy – the greatest hits collection 
   Genre: R&B/Soul 
   … 

Figure 1. An record in the structured music metadata. 

    
  A record in the structured metadata like the one in Figure 1 

corresponds to an entity.  An entity may contain fields. For 
example, The Artist field of the above example has the content 
“Boyz II Men.” An entity does not have to contain all fields. 
Removal of the Title field in Figure 1 would result in a new entity 
that represents an album instead of a specific song.  

  A currently deployed system [6] allows users to search music 
by specifying information about a single field with voice 
commands in the form of keywords followed by the exact content 
of the field of an intended entity. User studies have found that 
users often omit the keywords, and they may not know the exact 
content of a specific field. Table 1 compares the expected form of 
queries and the actual queries spoken by users. A more 
natural/flexible speech interface is thus desirable in this case. 

Expected form What users actually said 
Play song all rise All rise, I guess, from blues 
Play song Angel Sarah, in the arms of an angel 
Play album legally blonde Play legally blonde soundtrack 
Play artist Glenn Miller Glenn Miller, jazz. 

Table 1. The form of queries expected by a deployed system and 
the actual users’ queries. 
A natural interface for music search poses new challenges: 
1. Multi-field queries. Users often specify more than one field of 

an entity in a query. Figure 2 shows that more than half of the 
queries contain information about more than one field. The 
voice search engine needs to identify which field a word in a 
query is associated with. 

 
Figure 2. Distribution of queries containing 1,2, and 3 fields. 
2. Non-exact match of field contents: users’ specification of a 

field may not match the content in the metadata exactly. Figure 
3 illustrates the percentage of field-wise mismatches between 
queries and metadata. A robust information retrieval (IR) 
approach is more suitable than simple pattern matching. 

3. Ambiguity: Multiple entities may share the same content for a 
field. Voice search for “Yesterday” may be related to the song 
“Yesterday” by Beatles or by Leona Lewis, or “Only 
yesterday” by Carpenters. The problem is complicated by 
challenge 2 – a word may be shared by different fields of 
different entities in the metadata. It is important to coordinate 
the information about multiple fields for disambiguation.  
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Figure 3. Percentage of query fields that do not exactly match the 
content of the corresponding field in the structured data. 

4. ASR errors: a recognition error can make an irrelevant entity 
surface to the top in the search results. 

      This paper addresses those challenges. Instead of using the 
traditional structure-agnostic approaches to information retrieval 
(IR), a field-sensitive model is proposed, and an HMM sequential 
model is applied subsequently to rescore the hypotheses obtained 
from the new model (Section 2). The ASR problem is addressed by 
extending the sequential model to take into account phonetic 
confusability (Section 3). The different models are evaluated in 
Section 4, and Section 5 concludes the paper. 
 

2. SEARCH FOR STRUCTURED DATA 

2.1. Language Model Based IR 
Language model (LM) based IR [7] uses a channel model to find 
an entity Ê  (document) from a document collection given a user’s 
query Q :  

     

ˆ arg max ( | ) arg max ( | ) ( )
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In Eq. (1) every E  is assumed equally likely a priori. ( | )P Q E is 
modeled generatively with an entity-specific n-gram model that is 
smoothed with a global background model via linear interpolation:  
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LM-based IR is an alternative to other common approaches to IR, 
like the Tf-Idf weighted vector space model [8]. In a series of 
experiments on music metadata search, we have found that it had 
superior performance over other approaches. Therefore, we focus 
on LM-based structured data search in this paper. 

2.2. LM-Based IR for Structured Data 

The Baseline Systems 
We adopt two different baseline systems. The first (BM1) 

mimics the deployed system by treating each field as a separate 
entity. So the exemplar record in Figure 1 produces the following 
entities: “Boyz II Men” for artist, “It’s so hard to say goodbye to 
yesterday” for song title, “Legacy – the greatest hits collection” for 
album, and “R&B/Soul” for genre, etc. This baseline system works 

well only when users specify information about a single field in the 
query, as expected by the deployed system. The second one (BM2) 
collapses the structural information and treats the words in each 
field indifferently. So the structured entity in Figure 1 can be 
represented as a bag of words: {Boyz, II, Men, It’s, so, hard, to, 
say, goodbye, to, yesterday, R&B, Soul}. In doing so, a multi-field 
query can be handled. 

Interpolation of Field Retrievals 
     To leverage the structural (field) information in the music 
metadata, a refined model (FM) based on the interpolation of field 
specific retrieval models for ( | )P Q E is proposed:  
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Here ( | , )iP w F E is an entity-field specific language model, which 
is obtained via maximum likelihood estimation (MLE) and 
smoothed by interpolation with an entity specific model and a 
global model: 

( | , ) ( | , ) ( | ) ( )i f MLE i e MLE i c MLE iP w F E P w F E P w E P w
   

(4) 

where  1.f e c  While the interpolation weights can be set 
using held-out data, we found that the search performance is not 
very sensitive to their values as long as long as none of the weights 
is set too close to 0.  
    An entity independent prior field distribution ( )P F is used to 
derive the entity-specific field distribution by redistributing the 
probabilistic mass of the fields absent from an entity to the existing 
fields:  

   

( ) if 
1.0 ( )( | )

0 otherwise
y E

P F x
x E

P F yP F x E

      

(5) 

Throughout the paper, the following prior distribution ( )P F  is 
used. It incorporates the knowledge about field popularities: 

Title Artist Album Composer Genre Track Year 
0.3 0.3 0.3 0.025 0.025 0.025 0.025 

 
Sequential Model for Rescoring 
The model in Eq. (3) takes into account the structural information 
in IR ranking. One advantage of the model is that the indexing 
technique for LM-based IR is applicable for speedy entity search. 
However, the model is not very accurate in the following aspects: 
1. The summation over fields in Eq. (3) does not depict the 

generative process correctly. Users do not pick a word by 
considering the contents of all fields. Instead, they think about 
a field first and then select words to specify its content. 

2. The independence assumption of fields at different time is not 
accurate. Adjacent words are more likely to express the content 
of the same field. The lack of constraints on field transition in 
Eq. (3) results in frequent field hopping. 

     An HMM sequential model (HMM) is introduced to overcome 
the problems. First the decision rule is modified to search for an 
entity that gives rise to the highest likelihood of a query Q under 
the Viterbi field alignment F (an alternative decision rule using 
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summation over all possible alignments is also studied in the 
experiments for comparison): 

    

ˆ arg max ( | ) arg max ( | ) ( )

   arg max ( | ) arg max max ( , | )
E E

FE E

E P E Q P Q E P E

P Q E P Q F E
      (6) 

Here ( , | )P Q F E is modeled by an HMM: 
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     The emission probabilities are modeled in the same way as in 
Eq. (4). The transition probability is assigned as follows to 
penalize frequent field hopping: 
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where ( | )P F E  is the same as in Eq. (5). 
The HMM sequential model requires Viterbi decoding, hence it 

increases the search time by a factor of 2n , where n  is the 
number of fields. To expedite voice search, the sequential model is 
used to rescore the n-best search results from the previous model in 
Eq. (3). 

3. SEARCH WITH SPOKEN QUERIES 
Another advantage of applying generative models for IR lies in the 
fact that it opens the door for modeling ASR errors according to 
phonetic confusability. This can be illustrated by an example – the 
query “Mark Ranson and Amy Winehouse” is recognized as “the 
rising band Amy Winehouse” mistakenly. As the result, the IR 
component returns a wrong entity. If the model has the knowledge 
that “Ranson” and “rising”, “and” and “band” are phonetically 
similar, then the evidence for the correct entity that has both Mark 
Ranson and Amy Winehouse as the artists would be stronger. 
Formally, let R be the ASR output of a spoken query, then the 
sequential model with phonetic similarity measure (HMM/PS) can 
be expressed as 
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where 1 2 3 4 1.  Eq. (10) differs from Eq. (4) by the 
inclusion of ( | , )cP r F E , which is determined by the phonetic 
similarity between r and (part of) the content of F. More precisely, 
the phonetic transcription of a recognized word r is aligned to that 
of the content of a field F, and ( | , )cP r F E  is computed according 
to the operations in the alignment ( , )A F r  obtained via dynamic 
programming (DP). In addition to the traditional deletion, 
insertion, and substitution operations in DP, a skip operation (SK) 
is introduced. The probability of the operation is 1 if the operation 
occurs before the first (or after the last) operation involving a 
phone of  r, and 0 elsewhere. This is essential since r only has to be 
aligned to a consecutive portion of the content of F. Figure 4 
shows an exemplar alignment, where “*” on the recognized word 
side represents a deletion, and “*” on the field content side 
indicates an insertion. Note that the word boundary “—” is also 
included to penalize the easy matching of short recognized words 

like “I”. A confusion matrix that contains the probability for each 
insertion, deletion and substitution operation ( )P o is estimated 
with a data-driven approach from an independent data set. Given 
the alignment ( , )A F r and the ( )P o  matrix, the phonetic similarity 
probability is computed as follows: 
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where ( )N F stands for the number of words in the content of F, 
r  stands for the length of phonetic transcription of  r. 

4. EXPERIEMNTS 

4.1. Experiment Setup 
The music search query data were collected from 29 subjects. Each 
subject was instructed to search for their favorite songs with 
natural speech. The spoken queries were transcribed and the search 
targets were subsequently labeled by the subjects themselves. 425 
queries were collected this way. 409 of them have legitimate 
corresponding entities in the metadata. The remaining are 
commands like “Play next song,” which are handled by a 
command & control component instead of voice search. 250 of the 
data were collected from native English speakers. The metadata of 
the search targets, together with all other songs in the same albums, 
were added to a preexisting structured database of about 6,000 
entries, resulting in a final dataset of ~11,000 entities. The 
structured data consist of 75 fields. Among them, only seven fields 
are searched for by users, including song title (Title), artist name 
(Artist), composer or conductor (Composer), album title (Album), 
genre (Genre), track number (Track) and year (Year). Figure 5 
shows the distribution of fields being searched for by users. 
Among them Lyrics and Description are not the actual fields 
available in the metadata – the metadata-based search is not 
capable to handle those queries. 

 
Figure 5. Percentage of queries containing a specific field. 

4.2. Experimental Results on Text Queries 
We first conducted experiments on text queries to study the 
effectiveness of different models for the search of structured data. 
For the HMM sequential models, we applied them to rescore the 
20-best search results from the field-sensitive IR model (FM). 
Table 2 shows the n-best (n=1,5,20) search accuracy for the 
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  Figure 4. The phonetic alignment between the field content “Mark Ranson and Amy Winehouse” and the recognized word “rising.” 
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different models. 
     It is clear that the baseline model BM1, which is based on the 
assumption that users always specify the information about a single 
field of a structured entity, is inadequate when natural speech is 
used. Its accuracy is much lower than the other models. 

Model 1 Best 5 Best 20 Best 
BM1 57.7% 81.5% 88.8% 
BM2 78.8% 89.1% 94.2% 
FM 82.0% 91.7% 95.1% 
HMM/FB 83.3% 91.9% 95.1%  
HMM/Viterbi 84.7% 92.2% 95.1% 

Table 2. N-Best accuracy of music search with text queries. 

     Compared to the more reasonable baseline accuracy of BM2, 
FM, the simple model that takes into account the structural 
information, has reduced the one-best search error by 15.1%, and 
the HMM rescoring model with Viterbi decision rule cut the one-
best search error rate by 27.8%. The improvement from the HMM 
rescoring model with decision rule based on all possible field 
alignments (HMM/FB) has yielded smaller improvements. This 
confirms our concern about the assumptions underlying the model 
FM, as discussed in section 2.2. 

4.3. Experimental Results on Speech Queries 
We have conducted experiments on spoken queries to investigate 
the robustness of the search algorithm to ASR errors, as well as the 
effectiveness of the phonetic similarity measure. The experiments 
were conducted with the subset of the data collected from native 
English speakers. To study the robustness under different word 
error rate conditions, different language models were used – some 
of them have cheating factors. Table 3 lists these language models. 

LM Description 
LM1 Trained from the transcriptions of all data. 
LM2 Trained from the transcriptions – carrier phrases 
LM3 Trained from a subset of metadata + usage patterns 
LM4 Trained from a subset of metedata 
LM5 Trained from metadata + usage patterns 
LM6 Trained from metadata 

Table 3. Language models in the experiments with speech inputs. 

      Here carrier phrases like “I want to listen” or “please play” 
were removed from transcriptions to train LM2. The subset for 
LM3 and LM4 training contains about 500 metadata entries that 
cover the entities intended by users. Common usage patterns like 
“Play Title by Artist” were introduced in LM3 and LM5 with 
unified language model [9]. 
      Table 4 shows the word error rates (WERs) and end-to-end 
search results with different language models and IR models: 

LM WER BM1 BM2 FM HMM HMM/PS 
-- 0% 65.0% 84.4% 86.0% 88.1% 88.5% 
LM1 5.4% 63.4% 81.1% 82.7% 84.4% 84.8% 
LM2 14.0% 63.4% 81.5% 83.5% 84.4% 85.6% 
LM3 30.0% 60.9% 79.4% 79.8% 81.9% 82.7% 
LM4 28.1% 61.3% 78.6% 79.8% 81.9% 82.7% 
LM5 25.3% 60.9% 76.1% 78.2% 79.4% 79.8% 
LM6 33.2% 57.6% 67.5% 70.0% 70.4% 71.6% 

Table 4. WER and 1-best search accuracy with spoken queries. 
The first row shows the performance on manual transcriptions. 

Several remarks can be made about the results in Table 4: 
1. The end-to-end search results are fairly robust to ASR errors. 

While the word accuracy has dropped by 33% from manual 
transcription to the ASR using LM6, the one-best search 
accuracy has deteriorated by around 19%.  

2. Compared to BM2, FM has consistently reduced search error 
by 2% to 11%, HMM sequential rescoring has reduced the 
error by 9% to 23%, and HMM rescoring with phonetic 
similarity measure has reduced the search error rate by 13% to 
26%. The HMM/PS model has reduced the error rate by 3% to 
8% compared to the sequential rescoring model without 
phonetic similarity measure. Although the improvements of 
HMM/PS are not statistically significant, they are consistent 
across different WER conditions. 

5. CONCLUSIONS 
The problem of retrieving structured data for voice search 
applications is investigated in this paper. We have shown that a 
voice search model restricting users from specifying information 
about multiple fields in structured data has performed very poorly 
when users speak naturally. The field sensitive model FM has 
significantly improved (15% error reduction on text queries, 
2%~11% on spoken queries) the retrieval accuracy over the 
baseline field-agnostic model BM2.The HMM sequential rescoring 
model has further reduced the search error (27.8% over BM2 on 
text queries and 13%~26% on spoken queries when phonetic 
similarity measure is introduced to the model.) Overall the end-to-
end search results are relatively robust to ASR errors. For future 
work, we would extend the work in [10] to train language models 
aiming at improving search accuracy. 
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